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Medical Cyber-Physical Systems (MCPS)
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Human-in-the-loop MCPS
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• Complex and connected software
• AI-enabled controllers
• Timing or resource constraints

• Advanced medical expertise
• Human supervision and control
• Tele-operation

• Variety of patient profiles
• Physiological and behavioral dynamics



Levels of Autonomy in MCPS
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Cognitive Assistants for EMS

Level 0 – Decision Support
The human actuates the physical system and 

autonomous controller provides feedback.

Controller

Sensors

Tele-operated Surgical Robots

Level 1 – Tele-Operation
The human actuates the autonomous 

controller who controls the physical system.

Controller

Sensors

Continuous 
Glucose Monitor

Insulin 
Pump

Controller

Artificial Pancreas Systems 

Level 2 – Autonomous
The autonomous controller actuates the 

physical system and the human monitors it.

Inspired by the SAE Levels of Driving Automation.



Cy
be

r
Ph

ys
ic

al
Hu

m
an

Safety and Security Vulnerabilities
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• 2007-2013: Over 6,800 FDA recalls
• Over 18 million devices
• ~ 24% computer failures
• 12% safety-critical

• 2014-2020: Over 7,100 FDA recalls
• 13% software related

H. Alemzadeh, et al, “Analysis of Safety-Critical Computer Failures in Medical Devices,”  IEEE Security & Privacy Magazine, 2013.
Y. Xu, et al., “Analysis of Cyber-Security Vulnerabilities of Interconnected Medical Devices, ” IEEE/ACM CHASE, 2019.
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Safety and Security Vulnerabilities
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H. Alemzadeh, et al, “Analysis of Safety-Critical Computer Failures in Medical Devices,”  IEEE Security & Privacy Magazine, 2013.
Y. Xu, D. Tran, Y. Tian, H. Alemzadeh, “Analysis of Cyber-Security Vulnerabilities of Interconnected Medical Devices, ” IEEE/ACM CHASE, 2019.
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• 1999-2018: 354 CVEs were reported to affect
interconnected medical devices.

• Steady increase, 2.5 times since 2013
• 38 ICS-CERT and 91 CVE records in 2018.



Tele-operated Surgical Robots
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Loosely Closed-loop Semi-autonomous:  No haptics, limited vision feedback

Credits: da Vinci Surgical System, Intuitive Surgical, Inc.



Tele-operated Surgical Robots
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Unintended Human Errors 
[IJMRCAS 2022]

DOS and MITM Attacks  
[ICCPS 2015]

Software, hardware, 
mechanical faults 
[PLOS ONE 2016]

Malware targeting control 
software [DSN 2016]

Faulty firewalls [WIRED 2014]

H. Alemzadeh, et al. “Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data”. PLOS ONE, 2016.
K. Hutchinson, Z. Li, N. Schenkman, L. Cantrell, Homa Alemzadeh,“Analysis of Executional and Procedural Errors in Dry-lab Robotic Surgery Experiments,” IJMRCAS, 2022.
H. Alemzadeh, et al., “Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation”, DSN, 2016.



Challenges
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• Offline safety assurance techniques 
• Hazard analysis and risk assessment 
• Model-based design, verification, and controller synthesis
• Inadequate in detecting residual faults, attacks on controller, and preventing adverse events

• Runtime anomaly detection and recovery methods
• Joint cyber-physical modeling and monitoring
• Cyber-physical checkpointing, roll-forward recovery, simplex architectures, and ML controllers
• Focused on fully autonomous, not considering humans in the loop (operators and patients)

• Solely model-based or data-driven techniques
• Fixed rules based on domain knowledge and medical guidelines
• Model-predictive Control (MPC) based on simple linear or complex non-linear models
• Black-box machine learning using limited data and non-transparent logic
• Issues with generalizability, robustness, and transparency
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Safety Engine • Preemptive Detection of Unsafe Control Actions
• Based on sensor data and control commands
• Just before execution in physical layer

• Prediction of Safety Hazards
• Time and likelihood estimation

• Prevention of Adverse Events
• Hazard mitigation and recovery
• Feedback to human operators



Context-Aware Runtime Safety Assurance
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An integrated model and data-driven approach:
• Bridge the gap between offline formal modeling and runtime monitoring
• Consider domain knowledge, human-cyber-physical context, and operator/patient profiles
• Design principles for safety engines applicable to medical, robotics, and autonomous systems

Thrust 2
Runtime Human-Cyber-Physical

Context Inference

Multi-modal Data

Thrust 3
Just-in-Time Risk-Aware 
Response and Mitigation

Thrust 1 
Safety Context 

Specification and Learning
Formal Framework for Control-

Theoretic Hazard Analysis

Dynamic Models
Modeling of Operational Context
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Human-Cyber-Physical Context
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• Operational Context
• Operator workflows, tasks, actions
• User intent, style, and skill level

• Cyber Context
• Control system and software states

• Physical Context
• Physical and environmental states
• Patient profiles and dynamics

Positioning needle

Pushing needle 
through tissue

Pulling suture

Anomaly Detection

Dynamic Model
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Safe/
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Control Action?



Thrust 1: 
Safety Context Specification and Learning

• Framework for formal specification of human-cyber-physical safety context
• Control-theoretic hazard analysis for specification of unsafe control actions based on multi-

dimensional system context
• Template temporal logic formulas for context-dependent hazard prediction and mitigation

• Modeling of operational context and relationship to cyber-physical context
• Hierarchical and generalized modeling of surgical tasks and context

• Data-driven refinement of safety context specifications
• Optimization of logic formulas using fault-free and faulty patient-specific data 
• Guided adversarial model training based on safety specifications

13



Modeling of Operational Context
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K. Hutchinson, I. Reyes, Z. Li, H. Alemzadeh, “COMPASS: A Formal Framework and Aggregate Dataset for Generalized Surgical Procedure Modeling,” Under Review.

Grammar Graph



Modeling of Operational Context
• Operational to physical context mapping

• Surgical tasks as finite-state MDPs
• Change in physical context by the execution of motion primitives

15 K. Hutchinson, I. Reyes, Z. Li, H. Alemzadeh, “COMPASS: A Formal Framework and Aggregate Dataset for Generalized Surgical Procedure Modeling,” Under Review.



Thrust 2: 
Runtime Human-Cyber-Physical Context Inference

• Surgical Context Detection and Segmentation
• Real-time surgical action recognition
• Multi-modal surgical scene segmentation

• Cyber Controller State Estimation
• Mapping low-level control commands to kinematic state variables
• Dynamic modeling of robotic joints and motor controllers

16



Operational Context Inference
• Task Segmentation and Action Recognition

• Gesture and motion primitive prediction
• Aggregate surgical dataset for robust model training
• Leave-One-Task-Out (LOTO) cross validation for generalizability

17 K. Hutchinson, I. Reyes, Z. Li, H. Alemzadeh, “COMPASS: A Formal Framework and Aggregate Dataset for Generalized Surgical Procedure Modeling,” Under Review.



Physical Context Inference
• Semantic segmentation: Surgical tool and object localization

• Context detection: Contour extraction and overlap detection

18 K. Hutchinson, Z. Li, I. Reyes, H. Alemzadeh, “Towards Surgical Context Inference and Translation to Gestures,” Under Review.

Suturing

Needle Passing

Knot Tying



Thrust 3:
Just-in-Time Risk-Aware Response and Mitigation 

• Human-Cyber-Physical Reachability Analysis for Hazard Prediction
• Prediction of human, cyber, and physical states
• Estimate likelihood and timing of hazards 

• Context-Dependent Response Action Prioritization and Decision Making
• Prioritize and select sequences of corrective actions 
• Timely and safe execution of motion primitive trajectories
• Real-time feedback to human operators

19



Education and Outreach

• Promote participation of undergraduate researchers 
and K-12 students from diverse backgrounds in the 
areas of engineering and robotics in medicine.

• Autonomous manipulation of a robotic arm
• Basic training task of “Pick and place” in robotic surgery

• K-12 and public outreach events
• Biomed-Tech-Girls: Robotic programming challenge
• UVA Engineering Open House

• Hands-on projects for a core course in NRT CPS curriculum
• Real-time embedded computing systems
• C programming on RTOS and TI micro-controller/launchpad
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