

CAREER: Context-Aware Runtime Safety Assurance in Medical Human-Cyber-Physical Systems

Homa Alemzadeh

Dependable Systems and Analytics (UVA-DSA) Electrical and Computer Engineering

University of Virginia

Medical Cyber-Physical Systems (MCPS)

Infusion Pumps

Patient Monitors

Defibrillators

Linear Accelerators

Human-in-the-loop MCPS

- Advanced medical expertise
- Human supervision and control
- Tele-operation
- Complex and connected software
- Al-enabled controllers
- Timing or resource constraints

- Variety of patient profiles
- Physiological and behavioral dynamics

Levels of Autonomy in MCPS

Cognitive Assistants for EMS

Level 0 – Decision Support

The human actuates the physical system and autonomous controller provides feedback.

4

Safety and Security Vulnerabilities

- 2007-2013: Over 6,800 FDA recalls
 - Over 18 million devices
 - ~ 24% computer failures
 - 12% safety-critical
- 2014-2020: Over 7,100 FDA recalls

H. Alemzadeh, *et al*, "Analysis of Safety-Critical Computer Failures in Medical Devices," *IEEE Security & Privacy Magazine*, 2013. Y. Xu, *et al.*, "Analysis of Cyber-Security Vulnerabilities of Interconnected Medical Devices," *IEEE/ACM CHASE*, 2019.

Safety and Security Vulnerabilities

- 1999-2018: 354 CVEs were reported to affect interconnected medical devices.
- Steady increase, 2.5 times since 2013

H. Alemzadeh, et al, "Analysis of Safety-Critical Computer Failures in Medical Devices," IEEE Security & Privacy Magazine, 2013. Y. Xu, D. Tran, Y. Tian, H. Alemzadeh, "Analysis of Cyber-Security Vulnerabilities of Interconnected Medical Devices," IEEE/ACM CHASE, 2019.

7

Tele-operated Surgical Robots

Loosely Closed-loop Semi-autonomous: No haptics, limited vision feedback

Tele-operated Surgical Robots

Unintended Human Errors [IJMRCAS 2022]

DOS and MITM Attacks [ICCPS 2015]

Software, hardware, Other Mechanical faults medical *[PLOS ONE 2016]* devices

Report firewalls [WIRED 2014] controller

Malware targeting control software [DSN 2016]

H. Alemzadeh, et al. "Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data". PLOS ONE, 2016.

K. Hutchinson, Z. Li, N. Schenkman, L. Cantrell, Homa Alemzadeh, "Analysis of Executional and Procedural Errors in Dry-lab Robotic Surgery Experiments," IJMRCAS, 2022.

H. Alemzadeh, et al., "Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation", DSN, 2016.

Challenges

Offline safety assurance techniques

- Hazard analysis and risk assessment
- Model-based design, verification, and controller synthesis
- Inadequate in detecting residual faults, attacks on controller, and preventing adverse events

Runtime anomaly detection and recovery methods

- Joint cyber-physical modeling and monitoring
- Cyber-physical checkpointing, roll-forward recovery, simplex architectures, and ML controllers
- Focused on fully autonomous, not considering humans in the loop (operators and patients)
- Solely model-based or data-driven techniques
 - Fixed rules based on domain knowledge and medical guidelines
 - Model-predictive Control (MPC) based on simple linear or complex non-linear models
 - Black-box machine learning using limited data and non-transparent logic
 - Issues with generalizability, robustness, and transparency

Context-Aware Runtime Safety Assurance

- Preemptive Detection of Unsafe Control Actions
 - Based on sensor data and control commands
 - Just before execution in physical layer
- Prediction of Safety Hazards
 - Time and likelihood estimation
- Prevention of Adverse Events
 - Hazard mitigation and recovery
 - Feedback to human operators

Context-Aware Runtime Safety Assurance

An integrated model and data-driven approach:

- Bridge the gap between offline formal modeling and runtime monitoring
- Consider domain knowledge, human-cyber-physical context, and operator/patient profiles
- Design principles for safety engines applicable to medical, robotics, and autonomous systems

Human-Cyber-Physical Context

Thrust 1: Safety Context Specification and Learning

- Framework for formal specification of human-cyber-physical safety context
 - Control-theoretic hazard analysis for specification of unsafe control actions based on multidimensional system context
 - Template temporal logic formulas for context-dependent hazard prediction and mitigation
- Modeling of operational context and relationship to cyber-physical context
 - Hierarchical and generalized modeling of surgical tasks and context
- Data-driven refinement of safety context specifications
 - Optimization of logic formulas using fault-free and faulty patient-specific data
 - Guided adversarial model training based on safety specifications

Modeling of Operational Context

K. Hutchinson, I. Reyes, Z. Li, H. Alemzadeh, "COMPASS: A Formal Framework and Aggregate Dataset for Generalized Surgical Procedure Modeling," Under Review.

Modeling of Operational Context

- Operational to physical context mapping
 - Surgical tasks as finite-state MDPs
 - Change in physical context by the execution of motion primitives

1 = Thread wrapped

Thrust 2: Runtime Human-Cyber-Physical Context Inference

Surgical Context Detection and Segmentation

- Real-time surgical action recognition
- Multi-modal surgical scene segmentation

Cyber Controller State Estimation

- Mapping low-level control commands to kinematic state variables
- Dynamic modeling of robotic joints and motor controllers

Operational Context Inference

• Task Segmentation and Action Recognition

- Gesture and motion primitive prediction
- Aggregate surgical dataset for robust model training
- Leave-One-Task-Out (LOTO) cross validation for generalizability

Physical Context Inference

- Semantic segmentation: Surgical tool and object localization
- Context detection: Contour extraction and overlap detection

Suturing

Needle Passing

Knot Tying

K. Hutchinson, Z. Li, I. Reyes, H. Alemzadeh, "Towards Surgical Context Inference and Translation to Gestures," Under Review.

Thrust 3: Just-in-Time Risk-Aware Response and Mitigation

- Human-Cyber-Physical Reachability Analysis for Hazard Prediction
 - Prediction of human, cyber, and physical states
 - Estimate likelihood and timing of hazards
- Context-Dependent Response Action Prioritization and Decision Making
 - Prioritize and select sequences of corrective actions
 - Timely and safe execution of motion primitive trajectories
 - Real-time feedback to human operators

Education and Outreach

- Promote participation of undergraduate researchers and K-12 students from diverse backgrounds in the areas of engineering and robotics in medicine.
- Autonomous manipulation of a robotic arm
 - Basic training task of "Pick and place" in robotic surgery
- K-12 and public outreach events
 - Biomed-Tech-Girls: Robotic programming challenge
 - UVA Engineering Open House
- Hands-on projects for a core course in NRT CPS curriculum
 - Real-time embedded computing systems
 - C programming on RTOS and TI micro-controller/launchpad

