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Motivations

- Safety and reliability of Al-Controlled CPS
are understudied problems.

- Lack of widely-accepted, precise,
mathematical specifications capturing the
correct behavior of Al-agents.

- Even a formally verified system may still fail
INn real scenarios due to the discrepancy
between models used for verification and
the real system.

Objective

- Develop scalable formal methods to reason
about the safety and reliability of Al-
controlled CPS.

- Characterize the environments for which Al-
controlled CPS are not safe to operate.

- Blame analysis in failed, yet formally verified
Al-controlled CPS.
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Localized Error and Plausible Fixes

Provably Correct Training of

-- CAREER: Decision Procedures for High-Assurance

Al-Controlled CPS

Yasser Shoukry, University of California, Irvine

Neural Network Controllers

- Given a model of the physical system and a

formal specification

- Traln a neural network controller that renders
the closed loop system provably correct.
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Core idea:
- Regression ReLU NN are Continuous

Piece-Wise Affine (CPWA) functions

- Use reachabllity analysis to identify
families of CPWA functions that satisfy
the specifications.

- Train the NN followed by “projecting’” the NN weights to the identified

family of CPWA functions.
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Scalable Formal Verification

of Neural Networks

- Given a Neural Network and an input-
output property.

- Verify that the NN follows the input-output
property.

- Solution: PEREGRINN: Penalized-
Relaxation Greedy Neural Network Verifier.
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