Embracing Complexity: A Fractal Calculus Approach to the Modeling and Optimization of

 Medical Cyber-Physical Systems
Paul Bogdan, Gaurav Gupta, Yuankun Xue, Ruochen Yang, Jayson Sia, Emily Reed, Mohamed Ridha Znaidi, and Valeriu Balaban
 Ming Hsieh Department of Electrical Engineering, University of Southern California

Embrace Complex Systems

- No precise relation between the input and output -Non-linear and unpredictable system dynamics - Collectively intercoupled dynamics - Impossible to analyze individually - Recognizable collective behavior - High degree of self-organization, emergence, collective perception

Complex spatio-temporal dependencies - Non-Markovian stochasticity

- Long-term memory and dependencies - Non-linear and fractal dynamics
- Intricate complexity of target system - Heterogeneous interactions among exorbitantly large set of system components
Under-explored underlying action patterns
- Difficult for interferential analysis

Inferring \& controlling unknown CPS dynamics \square Weighted multifractal network generator for accurate modeling of complex neuronal networks

-Capturing heterogeneity \& multifractality encoded in the networks at functional level \square Decoding \& representing complexity encoded in the interaction weights -Uncertainty: Incomplete observations, noisy system data, detecting missing / spurious interactions

Incomplete observations: What is the minimum fraction of node observations required to correctly reconstruct the model?
avarEM converges to 2.5% mean absolute error from the ground truth parameters with
only 50% observability

Computational Laws \& Neural Architectures

-Decipher neural activities and model neurons interaction from sparse data and with unknown unknowns (UUs)

- Neural spikes available as binary data $\Delta N \in\{0,1\}$ for neurons across time

- Fixed-point iteration with contraction to have fast converging solutions

Causal Inference of CNs / Unknown Unknowns

- Recover latent CNs under time-varying adversarial interventions

- Given: CN $G(t)$ partially observable due to attack $A=$ $\{A(s)\}$ at time $t, s=\{0, \ldots, t-1\}$. $G(t)$ obeys a stochastic generative CN model M with unknown parameters
Find: Latent victim subnetwork $L(t)$ and time-stamp of its nodes $\phi(L(t))$
Solve inference+identification at the same time

Machine Learning@CN: Causal inference + Expectation Maximization - Maximum likelihood estimation with a series of maximization of incomplete LL
Make causal Inference of latent subnetwork $L(t)$ with current belief on $M(E-$ step)
-Provable and practically good convergence to solutions

Recovering Latent CN Activities with UUs - Recover time-varying CN latent activities \& their accurate model - Given $x(t)$ partially observed activities, latent nodes fractional orders as α - Recover the associated fractional dynamics model and latent activities $z(t)$, unknowns

A is the coupling matrix, α is fractional order B is input coupling matrix Fractional Kalman filtering with Bayesian model, and extended Expectation Maximization like formulation
Modeling error reduction by $\sim 40 \%$ compared to state-of-the-art models

- Reconstruct CNs under real world attacks

Identifying Fractional Diffusion with few samples
\square Fractional Diffusion process
Fractional Reisz-feller derivative of order α and skewness $\theta{ }_{t} \mathcal{D}_{*}^{\beta} \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{D}_{\boldsymbol{x}} \mathcal{D}_{\boldsymbol{\theta}}^{\alpha} \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ Fractional Caputo time derivative with order β
-Identify arguments of fractional differential equation from few trajectories
-Moments-based and log Moments based algorithm for quick inference \square Theoretical and empirical fractional moments match
-Learn parameters from as few as 100 trajectories with less than 2% error

