CAREER: Enhancing the Robustness of Human-Robot Interactions via Automatic Scenario Generation

PI: Stefanos Nikolaidis, University of Southern California

PhD Students: Varun Bhatt, Matthew C. Fontaine, Heramb Nemlekar, Bryon Tjanaka

Motivation

- Robots deployed in the real world encounter a wide variety of scenarios, many of which can be missed by a manual tester.
- Testing on a diverse set of environments is crucial in ensuring robustness and identifying failures before their deployment in the real world.
- Hence, we require an automatic method of generating scenarios that can elicit diverse agent behavior and effectively identify the strengths and weaknesses of the agent being tested.

Key insight

 Quality Diversity (QD) algorithms can generate diverse environments but require expensive system evaluations.

- Deep neural networks can make rapid predictions but need diverse data to be accurate.
- We replace system evaluation with surrogate model predictions and train a surrogate model online with system evaluations.

Method

Maintain a surrogate model of agent behavior:

- Given an environment and human agent parameters as inputs, e.g. in the form of an image of its layout, the model outputs the predicted human-robot interaction outcomes.
- We can additionally perform self-supervised prediction of the agent trajectory to improve prediction accuracy.

Generate scenarios in two phases:

- Inner Loop: Generate a set of environments and human models rapidly with a QD (or a differentiable QD) optimization algorithm exploiting the surrogate model predictions.
- Outer Loop: Select a subset of generated scenarios, evaluate them to create ground-truth data, and train the surrogate model on the updated dataset.

Results: Video Game Domains

Results: HRI Domains

Generates human-robot interaction scenarios that lead to different ty[es of failures in a human-

robot collaboration task.

Broader Impacts

Introduced a robotics curriculum for high-school students in South LA.

Open-sourced **pyribs,** a Python library for QD optimization. The library includes multiple tutorials that enable users to quickly learn about QD optimization and experiment with problems from the QD literature.

2023 FRR & NRI Principal Investigators' Meeting

