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•  The	  legendary	  MIT	  tunnels	  will	  serve	  as	  
the	  race	  tracks	  with	  foam	  obstacles.	  

•  Students	  will	  use	  embedded	  
computa=onal	  pla>orms,	  gain	  
experience	  working	  with	  CPS.	  

•  Students	  will	  design	  algorithms	  and	  
compete	  to	  race	  through	  the	  tunnels.	  

•  The	  next	  genera=on	  
pla>orm	  will	  feature	  the	  
NVIDIA	  embedded	  
computers	  with	  mul=-‐
core	  processors.	  

Abstract:	  Designing	  soHware	  that	  can	  properly	  and	  
safely	  interact	  with	  the	  physical	  world	  is	  an	  important	  
cyber-‐physical	  systems	  design	  challenge.	  The	  proposed	  
work	  includes	  the	  development	  of	  a	  novel	  approach	  to	  
designing	  planning	  and	  control	  algorithms	  for	  high-‐
performance	  cyber	  physical	  systems.	  The	  new	  
approach	  was	  inspired	  by	  sta=s=cal	  mechanics	  and	  
stochas=c	  geometry.	  It	  will	  (i)	  iden=fy	  behavior	  such	  as	  
phase	  transi=ons	  in	  cyber-‐physical	  systems	  and	  (ii)	  
capitalize	  this	  behavior	  in	  order	  to	  design	  prac=cal	  
algorithms	  with	  provable	  correctness	  and	  performance	  
guarantees.	  The	  algorithms	  developed	  through	  this	  
research	  effort	  hold	  the	  poten=al	  for	  immediate	  
industrial	  impact,	  par=cularly	  in	  the	  development	  of	  
real-‐=me	  robo=c	  systems.	  These	  algorithms	  may	  
strengthen	  the	  rapidly	  developing	  U.S.	  robo=cs	  
industry.	  The	  proposed	  research	  ac=vity	  will	  also	  
vitalize	  the	  PI?s	  educa=onal	  plans.	  Undergraduate	  and	  
graduate	  courses	  that	  make	  substan=al	  contribu=ons	  
to	  the	  embedded	  systems	  educa=on	  at	  MIT	  will	  be	  
developed.	  The	  classes	  will	  focus	  on	  provably-‐correct	  
controller	  synthesis	  for	  cyber-‐physical	  systems,	  which	  
is	  currently	  not	  thought	  at	  MIT.	  Undergraduate	  
students	  will	  be	  involved	  in	  research	  ac=vi=es.	  

Goal:	  Exploi6ng	  connec6ons	  with	  	  sta6s6cal	  
mechanics	  for	  analysis	  and	  design	  of	  complex	  CPS:	  
	  
•  Geometric	  Complexity:	  Inherent	  in	  many	  robo=cs	  

applica=ons	  and	  beyond.	  For	  instance,	  configura=on	  space	  
describing	  the	  geometry	  of	  a	  robot	  and	  its	  environment.	  

•  Differen6al	  Constraints:	  Nonlinear,	  non-‐holonomic	  
differen=al	  equa=ons	  describing	  the	  physics.	  

•  Stochas6c	  Constructs:	  May	  arise	  in	  stochas=c	  
environments	  or	  in	  randomized	  algorithms.	  

1.	  Differen6al	  geometry,	  in	  par=cular	  sub-‐Riemannian	  
geometry	  can	  characterize	  small-‐=me	  reachable	  sets	  of	  
complex	  dynamical	  systems.	  

2.	  Stochas6c	  geometry,	  in	  par=cular	  percola=on	  theory,	  
characterizes	  the	  topology	  of	  random	  geometric	  shapes	  in	  
the	  Euclidean	  space.	  	  

The	  analysis	  reveals	  the	  asympto=c	  shape	  of	  the	  small-‐=me	  reachable	  
set,	  and	  algorithmic	  methods	  to	  constructs	  its	  approxima=ons.	  

The	  analysis	  reveals	  phase	  transi=ons	  and	  describes	  a	  number	  of	  
natural	  and	  engineered	  emergent	  behavior.	  

An	  overarching	  goal	  of	  the	  proposed	  research	  effort	  
is	  to	  develop	  differen2al	  and	  stochas2c	  geometry.	  
	  
In	  par=cular,	  we	  aim	  to	  inves=gate:	  
•  Percola=on	  processes	  on	  sub-‐Riemannian	  

manifolds.	  
•  Dynamic	  stochas=c	  growth	  processes	  on	  sub-‐

Riemannian	  manifolds.	  

1.	  MIT	  Robo6cs	  Course	  and	  Hackathon:	  	  
	  	  	  	  	  Autonomous	  mini	  race	  cars	  in	  MIT’s	  tunnels	  

2.	  MIT	  Aerospace	  Feedback	  Control	  Systems:	  	  
	  	  	  	  	  Teaching	  with	  Mini	  Drones	  
•  MIT’s	  Feedback	  Control	  Systems	  course	  is	  giving	  one	  mini	  drone	  to	  each	  

student	  enrolled.	  The	  students	  can	  do	  the	  labs	  at	  home.	  
•  The	  students	  can	  design	  feedback	  control	  systems,	  using	  our	  Matlab	  toolbox.	  
•  The	  toolbox	  generates	  C	  code,	  which	  is	  compiled	  and	  uploaded	  to	  	  the	  drone.	  	  

Problem	  Setup:	  	  
•  Vehicle	  naviga=ng	  in	  a	  sensor	  field.	  
•  Measurement	  loca=ons	  are	  available	  from	  a	  distance	  –	  

percep=on	  range.	  Vehicle	  has	  limited	  percep=on	  range.	  
•  Vehicle	  has	  limited	  agility	  and	  limited	  computa=on	  power.	  
•  How	  does	  sensing	  performance	  scale	  with	  the	  percep2on,	  

actua2on,	  and	  computa2on	  capabili2es	  of	  the	  vehicle?	  
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vehicle, the existence of an infinite collision-free trajectory
through the environment exhibits a phase transition, i.e., there
is an infinite obstacle-free trajectory almost surely when the
speed is below a threshold and it will collide with some tree
eventually otherwise. In [54], they further show that a planning
algorithm based on state lattices can navigate the robot with
limited sensing range. A similar problem is also studied in
[55]. Even though the problems are dual in some sense, the
mathematical tools that we utilize for the maximum reward
problem differs from the analysis presented in these references.

b) Contributions: A preliminary version of this paper
appeared in the Workshop on Algorithmic Foundations of
Robotics [56], where we introduced some of the analysis for
the discrete lattices presented in Section III. However, the other
results in this paper, including all results in Section IV, are
new. The contribution of this paper is three-fold. Firstly, we
formulate the maximum-reward motion problem, which serves
as a novel mathematical formulation for the analysis of a class
of robotics problems such as data gathering. Secondly, we
provide a rigorous analysis of the robot performance, given
its sensing, actuation and computation capabilities. This is
achieved by establishing connections with the last-passage
percolation problem in statistical mechanics. Thirdly, we apply
our theoretical results to provide insights for the design of UAV
systems.

c) Organization: We formalize the problem of the
maximum-reward motion and its special case in two dimen-
sional space in Section II. We introduce and analyze a discrete
version of the problem in Section III. With the help of the re-
sults for the discrete case, we study the continuous problem in
Section IV. In Section V, we provide the results of simulations
that support our theoretical results. Finally in Section VI, we
present applications of maximum-reward motions to a sensor
selection problem and a design problem involving UAVs and
unattended ground sensors.

II. PROBLEM DEFINITION

This section is devoted to a formal definition of the problem.
For this purpose, we first define the problem of collecting
maximum reward in a stochastic reward field, in its most
general form. Second, we introduce an important special case,
which this paper focuses on. Finally, as an instance of this
problem, we introduce an inference problem involving mobile
robotic vehicles tasked with data gathering.

A. Maximum-reward Motion in a Stochastic Environment
Consider a robotic vehicle navigating in a stochastic envi-

ronment, where the locations of targets are distributed ran-
domly and each target location is associated with a random
reward value. The precise locations of all of the targets are
unknown to the robot a priori. Instead, the vehicle discovers
the target locations and the rewards associated with the targets
on the fly. To model this phenomenon, we consider a target-
detection region attached to the vehicle. When the targets get
inside the detection region of the robot, the locations of the
targets and the rewards associated with them become known to

Fig. 1. An illustration of the vehicle navigating in a stochastic reward field.
The blue cylinders represent the target locations. The yellow region represents
the target-detection region attached to the vehicle. The locations of all targets
in this range are known to the vehicle. By visiting these target locations, the
vehicle can collect the reward assigned them, as illustrated by the trajectory
of the vehicle, which is shown in red in the figure.

the robot. The vehicle can then choose which locations to visit
and collect the rewards associated with these visited targets.

Note that, when subject to differential constraints involving
substantial drift, the vehicle must visit the most valuable targets
in the direction of drift selectively, in order to maximize the
total reward it collects. This often comes at the expense of
skipping some of the target locations, for instance, those that
are orthogonal to the drift direction. See Figure 1.

In this scenario, we are interested in understanding the
fundamental limits of the vehicle’s performance with respect
to its perception abilities (e.g., the size of its target-detection
region) and its differential constraints (e.g., its agility).

In this section, we present the reward collection problem in
a general form. In the next section, we introduce a special case
that captures all key aspects of the problem. This special case
is also analytically tractable. In particular, we can derive the
aforementioned fundamental limits for this special case.

The online motion planning problem is formalized as fol-
lows in its most general form:

Dynamics: Consider a mobile robotic vehicle that is gov-
erned by the following equations:

ẋ(t) = f(x(t), u(t)),
y(t) = g(x(t))

(1)

where x(t) 2 X ⇢ Rn represents the state, u(t) 2 U ⇢ Rm

represents the control input, y(t) 2 R2 is the position of the
robot on the plane where the targets lie, X is called the state
space, and U is called the control space. A state trajectory
x : [0, T ] ! X is said to be a dynamically-feasible state
trajectory and y : [0, T ] ! R2 is said to be a dynamically-
feasible output trajectory, if there exists u : [0, T ] ! U such
that u, y, and x satisfy Equation (1) for all t 2 [0, T ].

Major	  results:	  Percep6on	  Range	  
•  Performance	  increases	  exponen2ally	  with	  increasing	  

percep=on	  range,	  when	  the	  reward	  distribu=on	  is	  bounded.	  
•  Equivalently,	  only	  log	  percep=on	  range	  is	  enough	  to	  perform	  

op=mally,	  i.e.,	  as	  if	  the	  vehicle	  has	  infinite	  percep=on	  range.	  
•  We	  conjecture	  this	  result	  extends	  to	  when	  the	  distribu=on	  is	  

light	  tailed.	  	  
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IV. ANALYSIS

In this section, we return to the original maximum-reward
motion problem in continuous space R2 defined in Sec-
tion II-B. We will show that maximum-reward motion in
continuous space is a natural extension of the discrete problem
on regular lattice L

d

. Specifically, the continuous problem is
the limiting case of the lattice-based motion in Section III
when discretization of space goes to the finest.

A. Motion Planning Algorithm

Similar to the planning algorithm on discrete lattices, in
the continuous space the planning algorithm proceeds in a
receding-horizon manner. Suppose the robot starts at an initial
state zinit. The best feasible trajectory x

e

: [0, T
e

]! X within
the “visible” region of the lattice is computed, and the robot
follows this dynamically-feasible trajectory. After the robot
executes this trajectory, the same procedure is repeated. This
algorithm is formalized in Algorithm 2.

More specifically, PerceiveEnvironment() (Line 3) is a
procedure that returns z(t), which contains positions of targets
and amounts of rewards associated with them within the
current sensing distance of the robot. The robot then computes
the optimal path within the set of trajectories Paths(z(t))
to maximize the rewards collected (Line 4). In this problem,
Paths = {⇡ : ẋ1 = v, |ẋ2|  w}. The procedure Execute(⇡)
(Line 5) commands the robot to move along the planned path
⇡ : [0,m/v] ! X . After completion of this command, the
entire procedure is repeated until time distance

x

is greater
than mission length L (Lines 2-7).

Algorithm 2 Receding-horizon online motion planning
1: distance

x

 0

2: while distance

x

< L do
3: z(t) PerceiveEnvironment()

4: ⇡N  argmax{R(Trajectory(⇡) : ⇡ 2
Paths(z(t))}

5: R
i

 Execute(⇡N )

6: Q Q+R
i

7: distance

x

 distance

x

+m

B. On Infinite-Horizon Mean Rewards

Let’s Let ⇧(L) be the set of all feasible paths that start
from the origin and travels a distance of L in the longitudinal
direction, i.e., the x1 axis.

Recall the assumption that the reward locations {p
i

} are
generated by a Poisson point process with intensity �. The
amount of rewards at each target are i.i.d. random variables
r(p

i

) that follow a common reward distribution. Let R(L)
denote the maximal total reward collected by following some
path in ⇧(L), i.e.,

R(L) := max

⇡2⇧(L)

X

pi2⇡

r(p
i

).

The first result for the continuous problem is an extension
of Proposition 1, Proposition 2, and Theorem 1 for the discrete
problem.

Theorem 4 (Mean Maximal Reward). Suppose the reward
locations are generated by a Poisson point process with
intensity � on R2. The robot dynamics satisfies the following
ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). If we define R⇤
2 =

sup

L

E[R(L)]
L

, then

lim

L!1

R(L)

L
= R⇤

2 almost surely.

Moreover, if the reward distribution is either exponential or
geometric, then

R⇤
2 �

p
�E[r2].

The proof for Theorem 4 is given in Appendix E. Note
that here the robot agility is fixed at 1, and more discussion
regarding agility is presented in Section IV-D.

C. Performance with respect to Sensing Distance
Let the sensing distance m be a positive number. R

i

is
the amount of rewards collected during the ith iteration of
Algorithm 2, and Q(L;m) denotes the total rewards collected
with Algorithm 2 throughout the entire mission, i.e.,

Q(L;m) :=

L/mX

i=1

R
i

.

The following result extends Theorem 2 and shows that the
receding horizon algorithm still has near-optimal performance
even in the continuous problem, when the sensing distance m
is at the order of logL.

Theorem 5. Suppose the reward locations are generated by
a Poisson point process with intensity � on R2. Suppose
that these rewards r(p

i

) are uniformly almost-surely bounded
random variables, i.e., there exists some b such that

P(|r(p
i

)|  b) = 1 for all i 2 N
and that R⇤

2 is finite. The robot dynamics satisfies the following
ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then, for any � > 0,
there exists some constant c such that

lim

m!1
P
⇣ ���

Q(L(m),m)

L(m)

�R⇤
2

��� � �
⌘

= 0.

where L(m) = ecm for some constant c that is independent
of m (but depends on �).

With a simple change of variable, we obtain the following
Corollary 3. 10

Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim

L!1
P
⇣ ���

Q(L, c logL)

L
�R⇤

2

��� � �
⌘

= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(p

i

) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =

w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2

), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m2, and by the
property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m2.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2m4
).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R⇤

2 with increasing sensing
distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2m0
) = O(

p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

•  However,	  the	  percep=on	  range	  required	  to	  navigate	  op=mally	  
is	  almost	  linear,	  when	  the	  reward	  distribu=on	  is	  Pareto.	  	  	  

•  We	  conjecture	  this	  generalizes	  to	  all	  heavy-‐tailed	  distribu=ons	  
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim

L!1
P
⇣ ���

Q(L, c logL)

L
�R⇤

2

��� � �
⌘

= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(p

i

) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =

w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2

), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m2, and by the
property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m2.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2m4
).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R⇤

2 with increasing sensing
distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2m0
) = O(

p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

Major	  results:	  Agility	  
•  The	  performance	  curve	  with	  respect	  to	  agility	  can	  be	  

characterized	  exactly:	  	  
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim

L!1
P
⇣ ���

Q(L, c logL)

L
�R⇤

2

��� � �
⌘

= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(p

i

) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =

w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2

), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m2, and by the
property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m2.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2m4
).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R⇤

2 with increasing sensing
distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2m0
) = O(

p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

Major	  results:	  Computa6on	  
•  The	  scaling	  of	  computa=on	  can	  also	  be	  characterized	  exactly:	  	  
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim

L!1
P
⇣ ���

Q(L, c logL)

L
�R⇤

2

��� � �
⌘

= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(p

i

) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =

w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2

), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m2, and by the
property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m2.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2m4
).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R⇤

2 with increasing sensing
distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2m0
) = O(

p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.
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lim

L!1
P
⇣ ���

Q(L, c logL)

L
�R⇤

2

��� � �
⌘

= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(p

i

) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =

w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2

), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m2, and by the
property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m2.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2m4
).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R⇤

2 with increasing sensing
distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2m0
) = O(

p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.
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surements to improve the estimate. This task may be compu-
tationally challenging as it may involve image analysis, sensor
fusion, et cetera. The computational workload for this task
increases proportionally with

p
↵.

e) The co-design of sensing distance, agility, and compu-
tation properties: Finally, we note that in many problems, the
sensing, agility, and computational capabilities of the vehicles
must be designed jointly. For the purpose of illustration, we
present a plot of mean rewards versus both the sensing distance
and the robot agility in Figure 15 for exponentially-distributed
rewards, obtained from computational experiments. For a given
sensing distance and agility, this plot shows how the reward
per unit length (thus estimation precision per unit length)
changes. From plots such as this one, sensing distance and
agility can be determined for a desired level of perception.
Let us note that some of the information on this plot can be
proved in a mathematically rigorous manner as well, at least
for large values of the sensing distance. Similar results are
readily available for the computational workload as well.
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Fig. 15. Expected reward versus both the sensing distance and the agility
for the simulation where the intensity � of the Poisson point process is 1 and
the rewards follow an exponential distribution with mean 1.

B. Case Study: Unattended Ground Sensor Selection
In this section, we present a short case study that involves

a UAV is tasked with estimating an unknown variable ✓
with data acquired from Unattended Ground Sensors (UGS)
that are randomly distributed over a region of interest. The
UGS technology is an emerging technology that may have
substantial impact in environmental monitoring, surveillance,
and reconnaissance. The UGS often house primitive sensors
that record various measurements, e.g., seismic, acoustic, mag-
netic, temperature, and humidity measurements, continuously
for extended time periods, e.g., for several months. They are
often deployed sparsely, which prevents formation of ad-hoc
networks. However, the data they record can be collected by
UAVs that fly over the sensors.

In this section, we demonstrate how our analysis can be
utilized to arrive at fundamental results for a certain kind of

UGS selection problem. Specifically, we consider a problem
where each UGS provides a measurement of ✓ corrupted
with Gaussian noise. The precision of the measurement may
depend on the UGS. We assume that the UAV recognizes each
UGS from a certain distance, and learns the precision of the
measurement that is obtained by that UGS. The UAV must
plan its path carefully to best estimate the unknown variable
✓. Clearly, this problem is the same as the problem which we
presented in Section II-C.

Now suppose we have the option to choose the sensors
before they are distributed in the field. Due to limited budgets,
the average quality of sensors is fixed and the total number of
sensors is given, i.e.,

E[�
i

] = µ
�

,

where µ
�

is some positive constant and � is known. With
above constraints, we want to address the following question:
Which one of the following two strategies yields a higher level
of confidence for the estimation?

1) Assign the same level of precision to all sensors, i.e.,
�
i

= µ
�

for all i
2) Randomize the level of precision �

i

over some probability
distributions F

�

with mean µ
�

By now we can see that this sensor selection problem is an
instance of the reward-collection problem in two dimensional
space. In this case, the reward is the precision gain �

i

after
getting the observation from a sensor.

The first strategy assigns equal precision to all sensor. As
a result, the robot should visit as many sensors as possible
in order to maximize the total precision gain. Let’s introduce
Theorem 8, which is a proven result in the applied probability
literature rephrased with our notation.

Theorem 8 (See [74]). Suppose the reward locations are
generated by a Poisson point process with intensity � on
R2 and all rewards are 1. The robot dynamics satisfies the
following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., the robot agility is 1). Then

lim

L!1

R(L)

L
=

p
� almost surely.

Theorem 8 provides the expectation of mean rewards col-
lected when all the rewards are equal to 1. Therefore, it follows
that the average number of sensors visited is

p
�, and hence

the overall precision gain would be L ·
p
� · E[�].

The second strategy, on the other hand, utilizes sensors with
random precisions. According to Theorem 4, if the reward
distribution is either exponential or geometric, then the average
precision gain is

p
� ·R⇤

2 �
p
� ·

q
E[�2

i

] >
p
� · E[�].

This implies that the overall precision gain is at least L ·
p
� ·p

E[�2
i

], which is bounded below by the first strategy with

14

Optimal Distance-of-travel vs. Sensing Distance (Exponential Rewards)

Perception Range m
0 10 20 30 40 50 60

D
is
ta

n
ce

100

101

102

103
Exponential Rewards, 6 = 1; / = 0.1

Simulation
4.4" exp(0.09"m)

Perception Range m
0 10 20 30 40 50 60

D
is
ta

n
ce

100

101

102

103

Exponential Rewards, 6 = 1; / = 0.125

Simulation
4.4" exp(0.1"m)

Perception Range m
0 10 20 30 40 50

D
is
ta

n
ce

100

101

102

103

Exponential Rewards, 6 = 1; / = 0.15

Simulation
4.4" exp(0.115"m)

Fig. 8. The average distance-of-travel is plotted against sensing distance m of the robot. The Poisson process is parameterized with � = 1 and each rewards
ri follows an exponential distribution with parameter 1. Note that the y-axis is on log scale, so the distance of travel increases exponentially fast with sensing
distance m, when m is sufficiently large (even for such unbounded light-tailed rewards).
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Fig. 9. The average distance-of-travel is plotted against sensing distance m of the robot. The Poisson process is parameterized with � = 1 and each rewards
ri follows an geometric distribution with parameter 0.5. Note that the y-axis is on log scale, so the distance of travel increases exponentially fast with sensing
distance m, when m is sufficiently large (even for such unbounded light-tailed rewards).
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Fig. 10. Expected reward versus robot agility for the simulation where the
intensity � of the Poisson point process is 10 and the rewards follow an
exponential distribution with mean 1.
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Fig. 12. Mean runtime of dynamic programming for motion planning, where
the intensity � of the Poisson point process is 1 and the rewards follow a
bernoulli distribution with p = 0.5. The sensing distance is fixed at m = 100.

Inference Tasks vs. Sensing Distance
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Fig. 13. Average number of inference tasks (targets visited) grows linearly
with the mission length.

distance-of-travel L (i.e., the mission length), almost surely.
Furthermore, the total precision of the estimate is at least
L ·

p
�E[�2

], where � is the intensity of the measurement
locations and � is a random variable (either geometric or
exponential) that denotes the precision of each measurement.

Hence, we find that both increasing measurement precision
(�) and increasing travel distance (L) has non-diminishing
returns for the data-gathering problem outlined in Section II-C.

b) On sensing distance: The sensing distance has widely
different implications, depending on the distribution of the
precision of each measurement.

If the precision of the measurements are bounded, then
the precision of the estimate of ✓ increases linearly with
increasing distance. Furthermore, according to Corollary 3,
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Fig. 14. Average number of inference tasks (targets visited) grows linearly
with the mission length. The sensing distance is fixed at m = 100.

even with a sensing distance of log(L), the precision of
the estimate of ✓ is almost as good as the precision of the
same estimate when the sensing distance is L, if the vehicle
travels a distance of L, with high probability. In other words,
it is possible to achieve near-optimal estimation performance
with little sensing distance for bounded rewards. We conjecture
that this result extends to all light tailed distributions of the
precision of the measurements.

However, when the precision of the measurements is dis-
tributed according to the Pareto distribution with parameter
↵ 2 (1, 2), then the precision of the estimate increases
super-linearly with increasing sensing distance. Furthermore,
according to Theorem 6, it is impossible to obtain near-optimal
estimation performance with small sensing distance for Pareto
rewards with parameter ↵ 2 (1, 2), which is a heavy-tailed
distribution. We conjecture that this result applies to all heavy
tailed distributions of the precision of the measurements.

c) On agility: According to Theorem 7, the precision of
the estimate increases with increasing agility ↵ = w/v, where
w is the maximum lateral speed and v is the longitudinal speed
of the vehicle. However, the increase comes with diminishing
returns, proportional to

p
↵.

d) On computation workload: The quantification of the
computational workload for the data-gathering problem of
Section II-C follows that of the maximum-reward problem,
the analysis for which was presented in Section IV-E. The
computational workload can be partitioned into two activities,
namely planning and inference. The planning task consists of
determining the set of target locations to be visited each time
a new target gets in the sensing distance of the vehicle. The
computational workload for this task increases substantially
with increasing sensing distance and robot agility. Specifically,
the the computational workload for planning increases as
O(↵2m4

), where m is the sensing distance and ↵ is the robot
agility.

The inference task consists of incorporating the new mea-
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