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Abstract: Designing software that can properly and Design of UAVs for Data Gathering Tasks: Scaling Design of UAVs for Data Gathering Tasks: Scaling
safely interact with the physical world is animportant |\t perception, Actuation, and Computation wrt Perception, Actuation, and Computation
cyber-physical systems design challenge. The proposed

work includes the development of a novel approach to

designing planning and control algorithms for high- S Simulation Results:

performance cyber physical systems. The new ba

approach was inspired by statistical mechanics and - - 7 Optimal Distance-of-travel vs. Sensing Distance (Exponential Rewards)
stochastic geometry. It will (i) identify behavior such as 2P o e e
phase transitions in cyber-physical systems and (ii) 4 -

capitalize this behavior in order to design practical v B

algorithms with provable correctness and performance - - o & | -‘" L e

guarantees. The algorithms developed through this - ® s R T
research effort hold the potential for immediate 7 Mean Rewards v, Agilty (xponetial Rewards) o Panmi i v At
industrial im pac t, oar ticular Y in the develo omen t of - A Computaions Reienen for Motion Planni L Comutons R e

real-time robotic systems. These algorithms may
strengthen the rapidly developing U.S. robotics
industry. The proposed research activity will also
vitalize the PI?s educational plans. Undergraduate and
graduate courses that make substantial contributions
to the embedded systems education at MIT will be
developed. The classes will focus on provably-correct
controller synthesis for cyber-physical systems, which
is currently not thought at MIT. Undergraduate

Problem Setup:

* Vehicle navigating in a sensor field.

* Measurement locations are available from a distance —
perception range. Vehicle has limited perception range.

* Vehicle has limited agility and limited computation power.

 How does sensing performance scale with the perception,
actuation, and computation capabilities of the vehicle?

1.5 -

students will be involved in research activities. _ ,
Major results: Perception Range -
* Performance increases exponentially with increasing E 1~
perception range, when the reward distribution is bounded. g
I ol _ th vical  Equivalently, only log perception range is enough to perform = 0.5+
Goal; EXP o]:tmg colnn.ectlodnz W'.t S::atISl'IC? optimally, i.e., as if the vehicle has infinite perception range.
mechanics for analysis and design of complex CP5:  We conjecture this result extends to when the distribution is NE
e Geometric Complexity: Inherent in many robotics light tailed. 1
applications and beyond. For instance, configuration space 0 |
describing the geometry of a robot and its environment. Theorem 5. Suppose the reward locations are generated by Perception Range Nar Agility
« Differential Constraints: Nonlinear, non-holonomic a Poisson point process with intensity A on R®. Suppose
, . , o ’ , that these rewards r(p;) are uniformly almost-surely bounded
differential equations describing the physics. random variables, 1.e., there exists some b such that
e Stochastic Constructs: May arise in stochastic . c oy
environments or in randomized algorithms. (r(po)l < b) Jorallve R Current Educatl()nal ACtIVltIES
and that R is finite. The robot dynamics satisfies the following _
ordinary differential equation: 1. MIT Robotics Course and Hackathon:
Core Research: An Excursion into i) = v, dat) = ult), Autonomous mini race cars in MIT’s tunnels

where |u(t)| < v (i.e., robot agility is 1). Then, for any § > 0,
there exists some constant c such that

Differential and Stochastic Geometry

 Thelegendary MIT tunnels will serve as
the race tracks with foam obstacles.

L
1. Diff o : cul b-Ri : lim P(|Q( L(m),m) — R3| > 6) = 0. * Students will use embedded
. Differentia geometry, In partlcg ar sub-Riemannian m— 00 (m) computational platforms, gain
geometry can characterize small-time reachable sets of where L(m) = e“™ for some constant c that is independent experience working with CPS.

Complex dynamICal SyStemS. Ofm (bl/lt depends on 5) ° Students will design algorithms and
compete to race through the tunnels.

Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any 0 > 0, there exists some constant ¢ such that

(‘Q(LcLlog L)
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B * The next generation
>0) = 0. .
platform will feature the
NVIDIA embedded
computers with multi-
core processors.

* However, the perception range required to navigate optimally
The analysis reveals the asymptotic shape of the small-time reachable 15 almos.t lmear’ V\_/hen the r.ewa rd dIStrIbul‘IOh. 1S Paretc?. |
set, and algorithmic methods to constructs its approximations. * We conjecture this generalizes to all heavy-tailed distributions

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity \ on R%. Suppose that

2. Stochastic geometry, in particular percolation theory, these rewards r(p;) follow a Pareto distribution with parameter

characterizes the topology of random geometric shapes in a € (1,2). The robot dynamics satisfies the following ordinary
the Euclidean space. differential equation:
4 z1(t) = v, 22(f) = u(?),

where |u(t)| < v (i.e., robot agility is 1). Then there exists a
probability space (), F, P) such that as m goes to infinity,

L.
. [Q( ,m)] — em @O YL s m

L
. for some positive constant c. 2. MIT Aerospace Feedback Control Systems:
Teaching with Mini Drones
The analysis reveals phase transitions and describes a number of * MIT’s Feedback Control Systems course is giving one mini drone to each
natural and engineered emergent behavior. ] . student enrolled. The students can do the labs at home.
Major results: Agility « The students can design feedback control systems, using our Matlab toolbox.
e The performance curve with respect to agi|ity can be  The toolbox generates C code, which is compiled and uploaded to the drone.

An overarching goal of the proposed research effort

. : , _ characterized exactly:
is to develop differential and stochastic geometry.

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity A\ on R%. The robot

In particular, we aim to investigate: dynamics satisfies the following ordinary differential equation.:
* Percolation processes on sub-Riemannian B () = v, da(t) = u(t),

manifolds. where |u(t)| < w. Then for any finite L > 0, there exists a
* Dynamic stochastic growth processes on sub- constant ¢ > 0 such that

Riemannian manifolds. E[R(L)] = cv/a = cy/w/v.

Major results: Computation
 The scaling of computation can also be characterized exactly:

Tplanning = O(a2m4). frinference - O(a1/2m0) — O(\/a)
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