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Reasoning with Deep Contracts

Goal: A holistic framework including modeling 
techniques, specification formalisms, and scalable 
algorithms for the design and analysis of 
intelligent, autonomous, cyber-physical systems 
including  AI-enabled components with high 
guarantees of correctness in a modular way

Contract Framework for Stochastic Systems Learning-Enabled Cyber-Physical Systems

Contract C=(V,A,G):
Set V= I È O of variables

Set A of assumptions
Set G of guarantees

A, G: behaviors over V

An implementation M
satisfies a contract if  

MÇ A Í G
An environment E satisfies 

a contract if 
E Í A

(A, G) is compatible iff A≠ ∅

(A, G) is consistent iff G≠ ∅

Composition C!⨂C"

A = (A1 ∩ A2) ∪ ¬G1 ∪ ¬G2 
G = G1 ∩ G2

“Stochastic Assume-Guarantee Contracts for Cyber-Physical System Design,” Trans. Embedded Computing Systems, 2019

Synthesis of Optimal Control and Reinforcement Learning 
Policies from Rich Contracts

Impact on Society and Education 

Robustness Contracts for AI-Enabled Components
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Leverage Stochastic Signal Temporal 
Logic (StSTL) to express assumptions and 
guarantees on real-time, real-valued, 
stochastic signals and formulate 
verification and synthesis problems as 
StSTL satisfiability problems

B − 0.25 ≤ 0 → F[0,5] (0.4 − B)[0.95]

SCAnS (Stochastic Contract-Based Analysis and Synthesis)
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Enable efficient automatic generation of power 
management systems for richer specifications than 
previous solutions [Maasoumy et al. 2013, 
Shahsavari et al. 2015]

“Optimizing Assume-Guarantee Contracts for Cyber-Physical System Design,” Design Automation and Testing In Europe Conf., 2019

Extension: Optimizing assume-guarantee contracts to deal 
with performance/cost objectives and rewards in 
cooperating or non-cooperating multi-agent systems (e.g., 
connected autonomous cars)

Deep Contracts for compositional reasoning about probabilistic system behaviors:
- Context-aware: describe components conditioned to their environment and overall 

system goals
- Stochastic: express and propagate uncertainty at different abstraction layers 
- Vertically-integrated: bridge heterogeneous models and  architectures across the 

design hierarchy
- Pervasive: offers mechanisms to monitor requirements for continual assurance

Conjunction C! ∧ C"
A = A1 ∪ A2
G = G1∩ G2

Refinement
C! ≼ C"

A1 ⊇ A2
G1⊆ G2

Existing contract frameworks (e.g., [Benveniste et al. ‘12, Nuzzo et al. ‘15, ’18, ‘19]) 
enable modular verification, hierarchical refinement, and design reuse based on a 
rigorous calculus, but fall short of effectively capturing uncertainty, often leading to 
pessimistic solutions (over-design) or intractable representations

AutoDRIVE LAB

- Modern AI techniques enable adaptiveness and resilience of 
cyber-physical systems, but also bring more complexity, 
heterogeneity, approximations and uncertainty in the design.
- Requirements are not rigidly defined: How to relate 
component-level robustness to system-level objectives, such 
as safety, reliability, performance, cost?

Research Organization

- Provide the foundations for rapid, compositional, certified design and 
operation of adaptive and resilient learning-enabled cyber-physical 
systems for a broad range of applications: autonomous vehicles, 
robotics, industrial automation, medical devices, ... 

- Research outcomes are part of an educational program focusing on 
systems engineering concepts and multidisciplinary methods to realize  
safe and cost-effective intelligent systems interacting with people 
• Pre-college: via the USC Viterbi SHINE Program
• Undergraduate and  graduate: via new labs 

and collateral initiatives such as the USC 
AutoDRIVE Lab, the USC Autonomous Vehicles
Club, and the USC autonomous driving RacenOn! competition   

Source: Wikipedia

https://descyphy.usc.edu/research/cyber-physical-system-design/
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Satisfiability Modulo Convex Programming
+  Infeasibility Certificates based on 
Lagrangian Duality
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UNSAT: NN is robust / SAT: NN violates the 
contract 

- Generalize many notions of robustness  proposed in the literature
- Support sound and complete algorithms based on the coordination 

of Boolean satisfiability (SAT) solving and convex programming for 
efficient verification

N. Naik and P. Nuzzo., Int. Conf. Formal Methods and Models for System Design, 2020, Best Paper Award 

∃	#, #∗: #	 − #∗ ≤ 0.3 ∧ (-" # ≠ -" #∗ ∨
(0#$$%&' -! #∗ , 1(%)* ≥ 0.5)

Input Output: image violates 
the robustness contract

Robustness 
Contract 

Verification

Verification Problem Formulation
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Verify boundedness 
property:
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Contract + Input-to-
State Stability 
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Verification

Verification of neural network-based 
components against multiple 
robustness criteria

Compositional verification 
of closed-loop systems 
with deep reinforcement 
learning controllers 
against perception errors

Optimal Control of Markov Decision Processes (MDPs) Under 
Temporal Logic Specifications

“Optimal Control of Discounted-Reward Markov Decision Processes Under Linear Temporal Logic Specifications, ” American Control Conf., 2021

- “Soft” objective: Optimize discounted reward optimality 
over infinite horizon 

- “Hard” constraint: Mission-critical task expressed in general 
linear temporal logic (LTL) must hold with probability 1

Key Insight: Optimality and LTL satisfaction can be both 
expressed via occupation measures that can be matched to 
the same deterministic policy

× From Büchi
acceptance to 

reachability 
[Hahn et al. ‘19]

Occupation Measure 
for Optimality

Occupation Measure 
for Reachability 

Markov Decision Process (MDP)

Limit Deterministic 
Büchi Automaton (LDBA) 

[Kretinsky et al. ‘18]

Product MDP

Modified Product MDP

MILP Formulation 
Requiring Single Policy

Sample-Efficient Reinforcement Learning for Finite-Horizon 
Constrained MDPs
- Uncertain environments and unknown dynamics
- Multiple reward objectives and constraints 
Key Insight: Express optimal control of constrained MDPs as a 
linear program via occupation measures and exploit optimism in 
the face of uncertainty principle for learning efficiency

Initialize visitation counts

Update empirical transition 
probabilities and confidence intervals

Compute optimistic policy

Execute policy for an episode

Visits to a state-action 
pair doubled?

No

Yes

Update total visitation counts

“A Sample-Efficient Algorithm for Episodic Finite-Horizon MDP with Constraints”,  AAAI Conf. Artificial Intelligence, 2021 

Probably Approximate 
Correctness (PAC)-Based 

Complexity Bound

PAC sample complexity has 
quadratic dependence on the 
horizon length


