

Data-Driven Protection Levels for Camera and 3D Map-based Urban Localization

Overview

Objective:

- Reliably assessing the position error in an estimated vehicle position is integral for ensuring safety of the vehicle
- ► We develop a data-driven method for computing a probabilistic upper bound of position error, protection level, from camera images and a 3D LiDAR environment map

Protection Level:

 $PL = \sup\{x : \Pr(\|\hat{s} - s^*\| > x) \le IR\}$

Estimated position True position Integrity requirement

Contributions:

- Deep neural network (DNN)-based estimation of position error and its covariance in a vehicle state estimate from a camera image measurement and 3D environment map
- ► Method to characterize uncertainty in position error by computing multiple position error outputs from geometrically-related inputs to the DNN
- Outlier weighting scheme to mitigate the impact of large errors in DNN outputs

Estimating Position Error and Variance

► 3D map is projected to local reference frame of the vehicle state as a depth image

► A DNN estimates the position error vector and the associated covariance matrix from the camera image and

local depth map Position error CMRNet^{[1} vector Camera Image Covariance Position error Net covariance matrix DNN Local depth map

Idea: The state estimate position error AB can be computed from the linear combination of the position error AC or AD computed for a different candidate state and its relative position vector BC or BD.

Method:

- Determine multiple candidate states by selecting random positions and orientation from within a vicinity of state estimate
- Evaluate position error and covariance for candidate states from DNN
- Project the candidate state position errors into samples of the state estimate position error \blacktriangleright Weight each sample in x, y and z dimensions using robust Z-score
- to mitigate the effect of outliers

Computing Protection Levels

Se	ele
[1]	Ca
[2]	Gι

#2006162, CAREER: High Integrity Navigation for Autonomous Vehicles, PI: Grace Gao, Stanford University

Characterizing Uncertainty in Position Error Problems with DNN-based covariance:

Overconfident measure of uncertainty ► No accounting of DNN model inaccuracy or large errors Local map inputs ignore many environment features

- Incorporate uncertainty from the projection of candidate state position errors in the DNN-based covariance matrix
- Construct a Gaussian mixture model (GMM) probability distribution in lateral x, longitudinal y and vertical z directions from position error samples, outlier weights and covariance matrix
- Protection levels computed from CDF of GMM using numerical line search methods

ected References

attaneo, D., et al., IEEE, 2019. upta, S. and Gao, G. X., ION GNSS+, 2020

Longitudinal Vertical Lateral Figure: Protection level is computed as upper confidence interval of the GMM in lateral, longitudinal and vertical directions.

Table: Performance metrics of bound gap (BG), failure rate (FR) and false alarm rate (FAR) on KITTI dataset sequence 00 for integrity requirement of 0.01 and specified alarm limit (AL).

C	Conc
	Nove
	meas
	Prote
	Boun

Experimental Results

Camera images from KITTI visual odometry dataset

Figure: Vertical protection levels along subsequence from the test trajectory for integrity requirement of 0.01.

	Lateral PL	Longitudinal PL	Vertical PL
m)	0.85	1.50	1.47
m)	0.49	0.77	0.38
2	0.01	0.01	<0.01
R	0.47	0.40	0.14

lusion

I method to compute protection levels from camera image surements and 3D LiDAR map

ection levels enclose the position error with low failure rate d gap is smaller than quarter the width of standard US lane