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Overview
Objective:
I Reliably assessing the position error in an estimated vehicle

position is integral for ensuring safety of the vehicle
IWe develop a data-driven method for computing a

probabilistic upper bound of position error, protection level,
from camera images and a 3D LiDAR environment map
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Contributions:
IDeep neural network (DNN)-based estimation of position

error and its covariance in a vehicle state estimate from a
camera image measurement and 3D environment map

IMethod to characterize uncertainty in position error by
computing multiple position error outputs from
geometrically-related inputs to the DNN

IOutlier weighting scheme to mitigate the impact of large
errors in DNN outputs

Estimating Position Error and Variance
I 3D map is projected to local reference frame of the vehicle

state as a depth image
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IA DNN estimates the position error vector and the
associated covariance matrix from the camera image and
local depth map
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Characterizing Uncertainty in Position Error
Problems with DNN-based covariance:
IOverconfident measure of uncertainty
INo accounting of DNN model inaccuracy or large errors
I Local map inputs ignore many environment features

Idea: The state estimate position
error AB can be computed from
the linear combination of the posi-
tion error AC or AD computed for
a different candidate state and its
relative position vector BC or BD. B
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Method:
IDetermine multiple candidate states by selecting random positions

and orientation from within a vicinity of state estimate
I Evaluate position error and covariance for candidate states from

DNN
I Project the candidate state position errors into samples of the state

estimate position error
IWeight each sample in x, y and z dimensions using robust Z-score

to mitigate the effect of outliers

Computing Protection Levels
I Incorporate uncertainty from the

projection of candidate state
position errors in the DNN-based
covariance matrix

I Construct a Gaussian mixture model
(GMM) probability distribution in
lateral x, longitudinal y and vertical
z directions from position error
samples, outlier weights and
covariance matrix

I Protection levels computed from
CDF of GMM using numerical line
search methods
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Figure: Protection level is computed
as upper confidence interval of the
GMM in lateral, longitudinal and
vertical directions.
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Experimental Results
I Camera images from KITTI visual odometry dataset
I Randomly selected state estimates within ±2 m translation and ±5◦

rotation of the ground truth
I 3D map from LiDAR point clouds combined using SLAM poses

Figure: Horizontal (lateral and longitudinal) protection levels along two subsequences
from the test trajectory for integrity requirement of 0.01.

bound gap

Figure: Vertical protection levels along subsequence from the test trajectory for
integrity requirement of 0.01.

Lateral PL Longitudinal PL Vertical PL
AL(m) 0.85 1.50 1.47
BG(m) 0.49 0.77 0.38

FR 0.01 0.01 <0.01
FAR 0.47 0.40 0.14

Table: Performance metrics of bound gap (BG), failure rate (FR) and false alarm
rate (FAR) on KITTI dataset sequence 00 for integrity requirement of 0.01 and
specified alarm limit (AL).

Conclusion
INovel method to compute protection levels from camera image

measurements and 3D LiDAR map
I Protection levels enclose the position error with low failure rate
IBound gap is smaller than quarter the width of standard US lane


