CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures

PI: Rose T. Faghih, Department of Electrical and Computer Engineering, University of Houston

Challenges

- There is a rising cost of healthcare in the United States
- Wearable devices can be exploited for patient monitoring to recover rich information about internal physiological states for prognosis, diagnosis, and treatment

- To overcome the challenges with using wearable devices for health monitoring, the goals of this project include:
- 1. Inferring discrete brain-related events in real-world settings
- 2. Decoding multidimensional latent neurobehavioral states
- 3. Robust adaptive supervised control design for regulating neurobehavioral states

Scientific Impact

A transformative system-theoretic computational toolset for:

- Multimodal system identification and brain activity recovery
- Interpretable adaptive tracking of neurobehavioral states
- Personalized closed-loop control design for reliable actuation

Solution Inferred Sparse Brain Activity **Physiological Signals** Robust and Multi-modal Sparse **Recovered Cardiac Information** Artifact Recovery of Brain and Cardiac **Extracted Biomarkers** loise References Reduction Confidence Intervals **User Generated Labels GPS Location** Label Generator **Environmental Awareness** Adjustment Mechanism **Multi Dimensional Personalize** Objective 3 Supervised Robust **State Estimator Bias Corrected** Adaptive to Personalized Control **Individual Bias** Environmental Change

Objective 1

Brain activity inference from EDA with physiological Priors: $\min J_{\lambda}(\theta, u, \boldsymbol{q}) = \frac{1}{2} \| \boldsymbol{y} - A_{\theta} x_0 - B_{\theta} \boldsymbol{u} - \boldsymbol{C} \boldsymbol{q} \|_2^2 + \lambda_1 \| \boldsymbol{u} \|_1 + \lambda_2 \| \boldsymbol{q} \|_2 + \lambda_{3,4} [-\log(p(\theta))]$

s.t. $u \ge 0, q \ge 0, C\theta \le b$

- Identification performance with AUC of 0.865 in ROC
- Successfully analyzed 109 participant recording with $R^2 > 0.96$

Objective 2

Fusion of state estimation & external Information:

Arousal estimates from skin conductance match fNIRS (brain imaging) data:

Physiological

priors

Solution Continued

Objective 3

Supervised control architecture:

Supervised update of *Q* and *R*

Closed-loop emotion modulation testbed for regulating brain arousal state using

Societal and Quantified Impact

Health Monitoring

34% of US institutions intend to run classes

primarily online. 42% of US students indicated staying engaged is a major problem in online learning

88% of US physicians want patients to monitor their health parameters at home

35% of US employers use medical wearable technology to facilitate wellness programs

Educational and Outreach Impact

- 2 journal articles published and 3 submitted
- 3 senior design teams designed wearables for emotion monitoring
- 14 published educational videos
- 3 Undergraduate Research Projects (Honors Thesis, REU, Summer Undergraduate Research Fellowship).

 PI served as a panelist to guide Montgomery Community College students through their career paths

Computational Medicine Lab took part in the 2021 Girls **Engineering the Future - Virtual Outreach**

Computational Medicine Lab along with Engineers in Real Life co-hosted the outreach event Engineers Make a World of Difference.