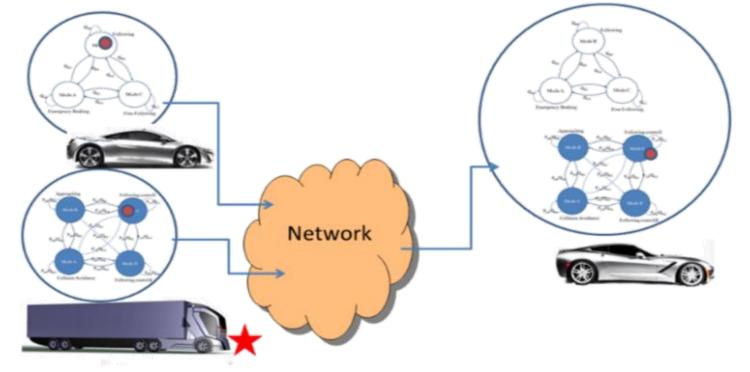


MOTIVATION AND PROBLEM STATEMENT

- The performance of cooperative vehicular applications is tightly dependent on the availability of information through Vehicle-to-Everything (V2X) communications.
- Scalability is one of the main challenges, preventing rich collaboration.
- Proposed approach: Replacing raw data dissemination communication with model-based communication (MBC)
- MBC proposes populating the V2X message content in a more intelligent way, by replacing the raw sensory data with models and model parameters of a mathematical stochastic model that describes vehicle behavior.



MODELING FRAMEWORK AND APPROACH

Stochastic Hybrid Systems (SHS) framework is appropriate for modeling combined dynamics (movements) of vehicle and driver. Gaussian Mixture Models (GMM) is a powerful tool for clustering and regression in multi-modal problems.

Modeling Using Gaussian Mixture Models: A Data-Driven Approach

• Assuming *d*-dimensional observations, e.g., sequences of vehicle's Longitudinal Speed (s) or Heading (h) measured at d equidistance time intervals, are independently sampled from K unknown multivariate Gaussian distributions, the observation pdf is:

$$p(x) = \sum_{i=1}^{K} \pi_k N(x|\mu_i, \Sigma_i)$$

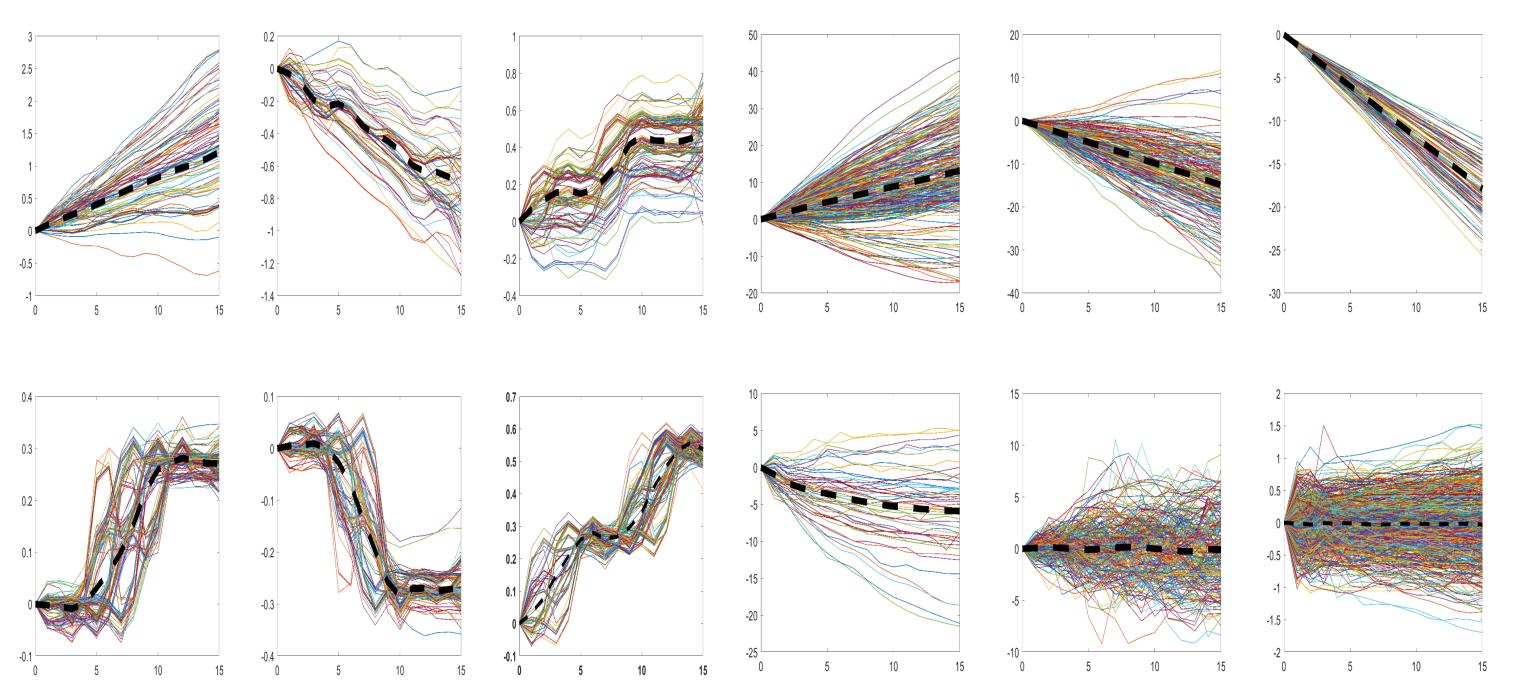
- The set of the parameters $\{K, \{\pi_i, \mu_i, \Sigma_i\}_{i=1,...,K}\}$ can be inferred from the training data using MCMC algorithms such as Gibs Sampling for Dirichlet Process Gaussian Mixture Model.
- We consider *s* and *h* as independent multi variate random variables to be modeled as GMM. Having r-dim. partial observations s and h, i.e., sequences measured at r equidistance time intervals (r < d), the current and the most probable mode of speed and heading and their predictive distributions at timestamp r + 1, ..., d can be derived as:
- $k_{s}^{*} = \arg\max p(s \in \Omega_{k}|s) \text{ and } \tilde{s}|s, k^{*} \sim N\left(\mu_{k_{s}^{*}}^{d-r} + \Sigma_{k_{s}^{*}}^{(d-r) \times r} (\Sigma_{k_{s}^{*}}^{r \times r})^{-1} (s \mu_{k_{s}^{*}}^{r}), \Sigma_{k_{s}^{*}}^{(d-r) \times (d-r)} \Sigma_{k_{s}^{*}}^{(d-r) \times r} (\Sigma_{k_{s}^{*}}^{(r) \times (r)})^{-1} \Sigma_{k_{s}^{*}}^{(r) \times (d-r)}\right)$ $k_h^* = \operatorname{argmax}_{k_h} p(h \in \Omega_k | h) \text{ and } \widetilde{h} | h, k_h^* \sim N\left(\mu_{k_h^*}^{d-r} + \Sigma_{k_h^*}^{(d-r) \times r} \left(\Sigma_{k_h^*}^{r \times r}\right)^{-1} \left(h - \mu_{k_h^*}^r\right), \Sigma_{k_h^*}^{(d-r) \times (d-r)} - \Sigma_{k_h^*}^{(d-r) \times r} \left(\Sigma_{k_h^*}^{(r) \times (r)}\right)^{-1} \Sigma_{k_h^*}^{(r) \times (d-r)}\right)$
- The forecasted position is derived by integrating over the predictive distributions.

$$\bar{X}(t_1) = \bar{X}(t_0) + \iiint_{t_0}^{t_1} \tilde{s} \cos(\tilde{h}) \Pr(\tilde{s}) \Pr(\tilde{h}) dt d\tilde{s} d\tilde{h}$$
$$\bar{X}(t_1) = \bar{X}(t_1) + \iiint_{t_1}^{t_1} \tilde{s} \sin(\tilde{h}) \Pr(\tilde{s}) \Pr(\tilde{h}) dt d\tilde{s} d\tilde{h}$$

$$Y(t_1) = Y(t_0) + \iiint_{t_0} \tilde{s} \sin(h) \Pr(\tilde{s}) \Pr(h) dt d\tilde{s} dh$$

GAUSSIAN MIXTURE MODEL INFERENCE RESULTS

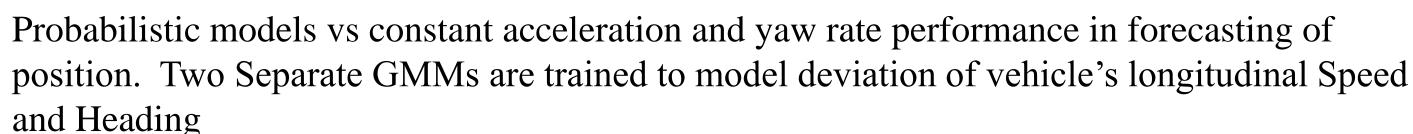
Illustration of 6 distinct modes of deviation of speed and heading and their members (s and h in 1600ms intervals). The black line shows the Gaussian component mean vector. The Gibs Sampler Dirichlet Process GMM has inferred 43 and 31 modes for *s* and *h* from training data.

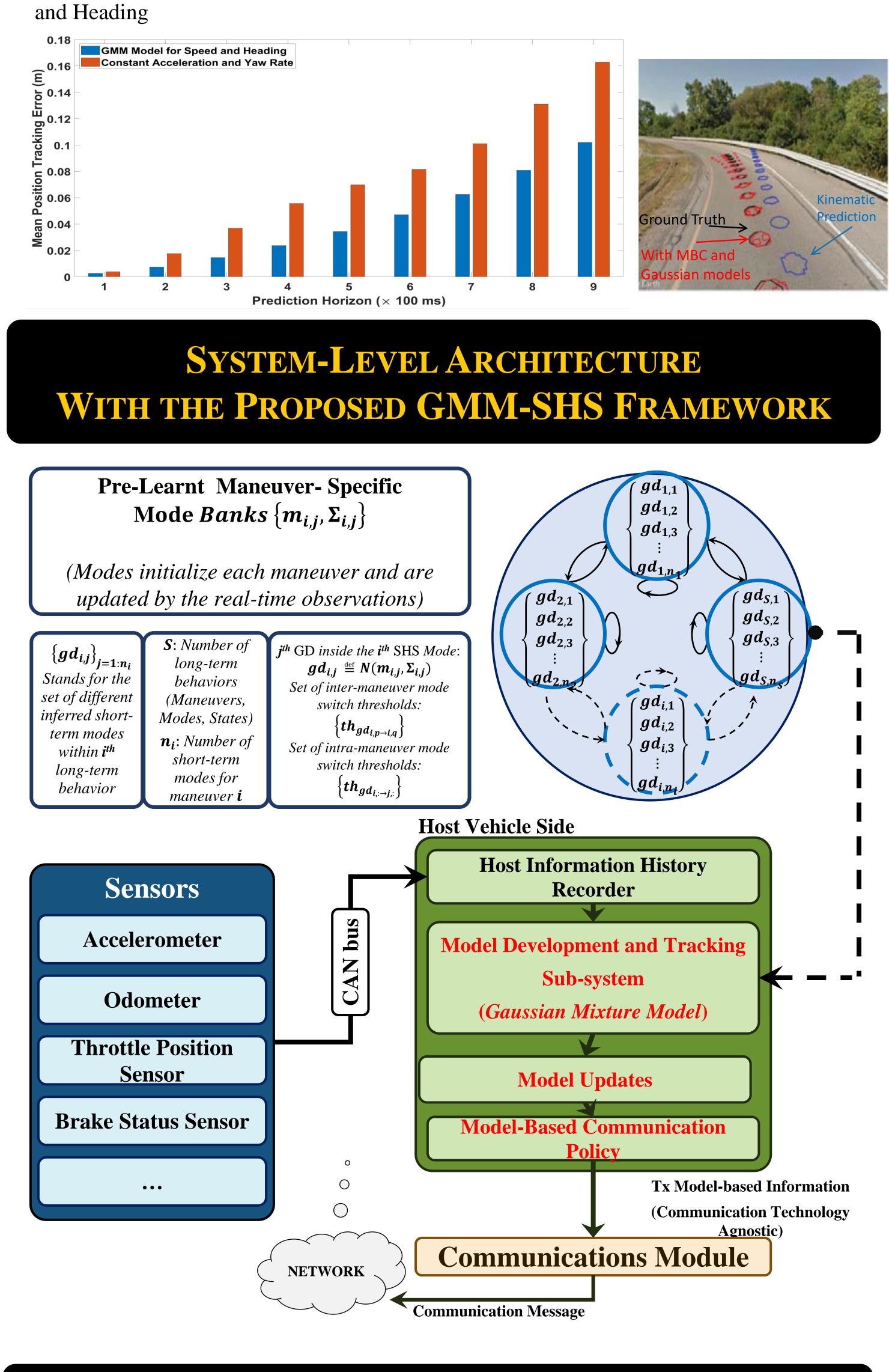


Deviation of Longitudinal Speed

Deviation of Heading

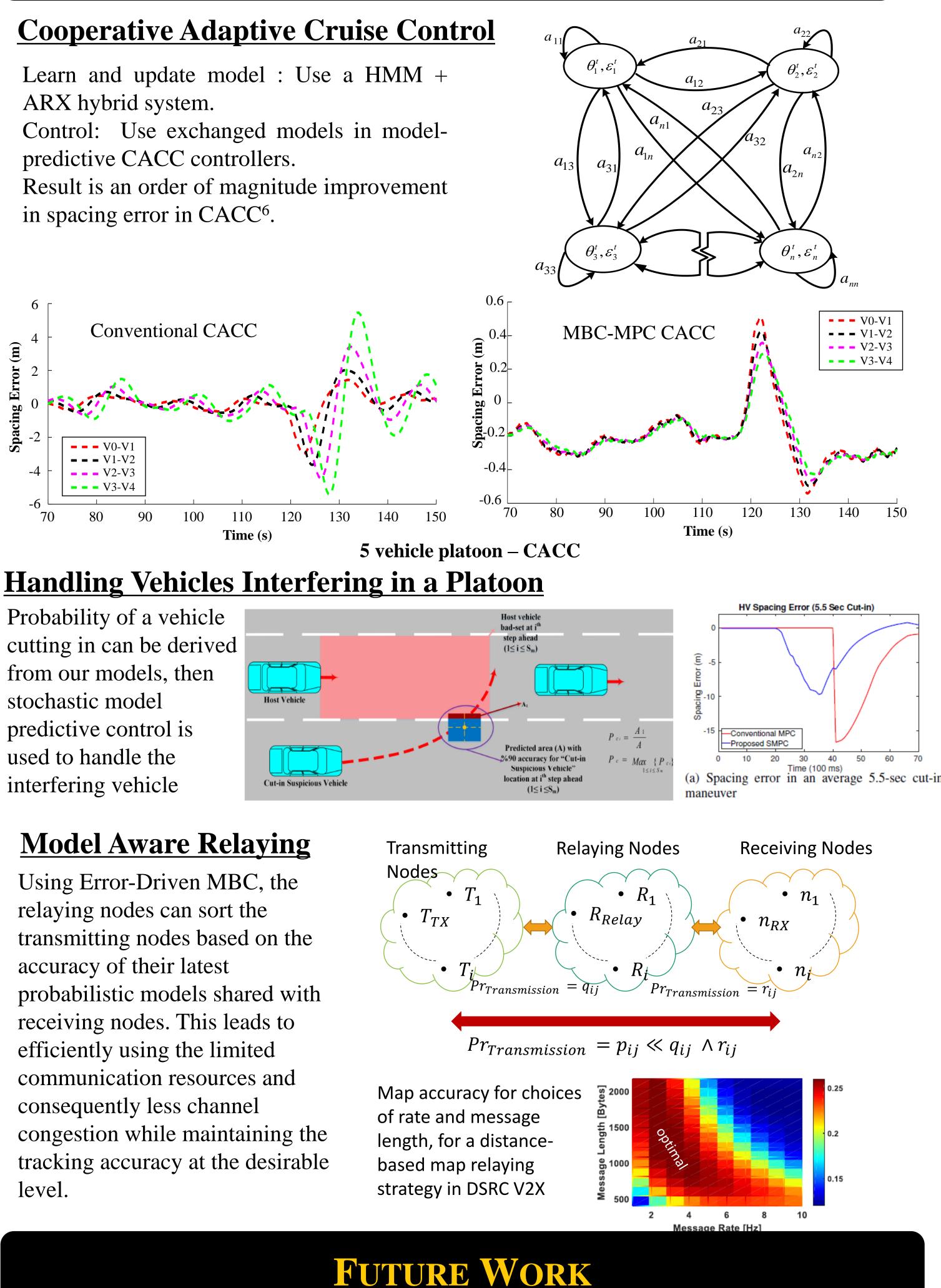
CAREER: MULTI-RESOLUTION MODEL AND CONTEXT AWARE INFORMATION NETWORKING FOR COOPERATIVE VEHICLE EFFICIENCY AND SAFETY SYSTEMS PI: Yaser P. Fallah, University of Central Florida (Yaser.Fallah@ucf.edu, https://cavrel.ece.ucf.edu/) - CNS-1664968

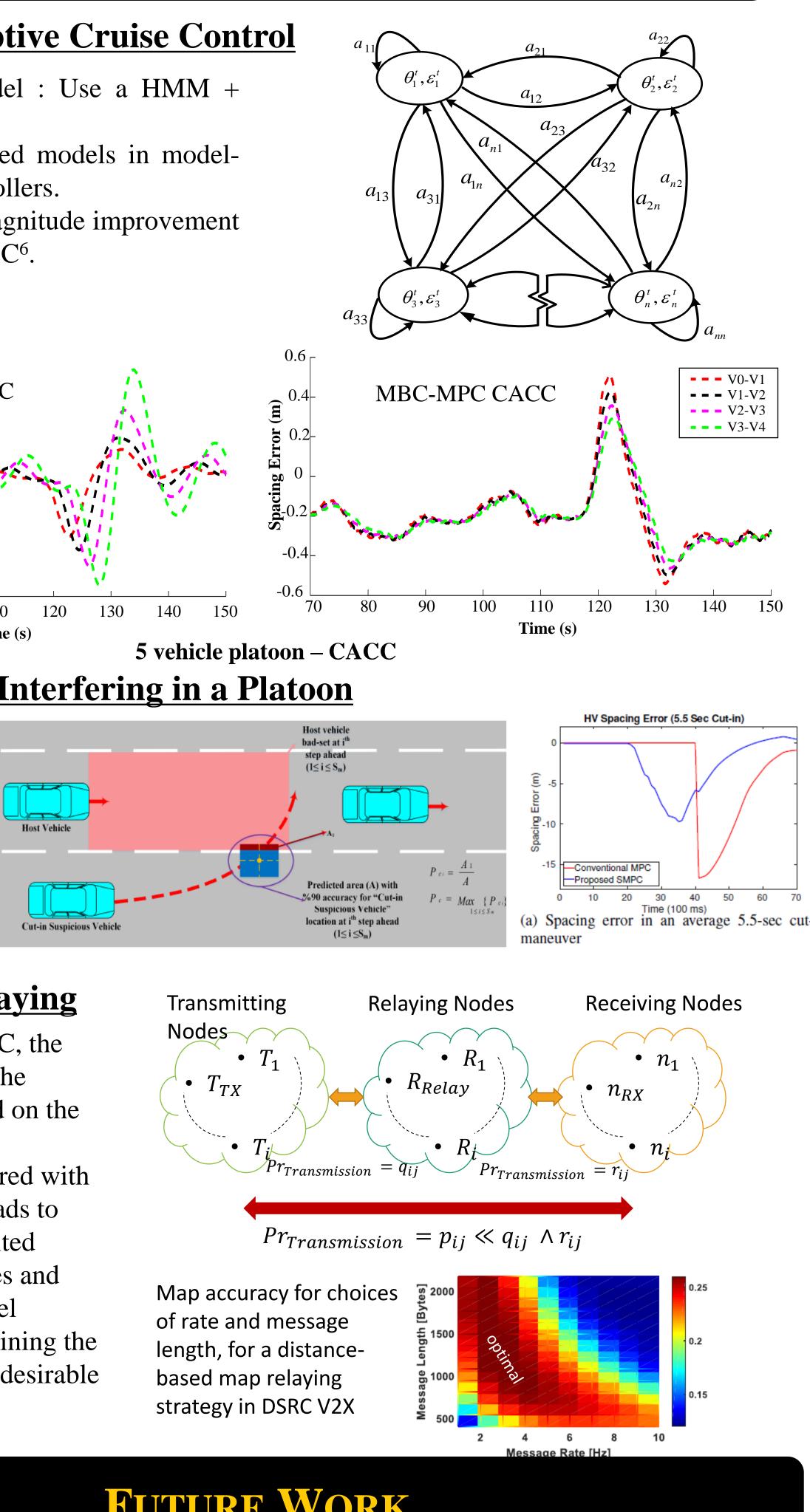




EDUCATION AND OUTREACH

- Two graduate courses designed : 6712 Modeling and Analysis of Networked CPS, 5781 Cyber Physical Technologies for Smart Communities
- >8 undergraduate students (4 from minority groups) involved in this research and building this test vehicle
- Spawned a new research project on cooperative perception and cooperative cognition, as well as a
- Collaborative project on Mass Platooning of automated vehicles





- requirements.

[1] R.M. Neal, "Markov chain sampling methods for Dirichlet process mixture models," Journal of computational and graphical statistics, 9(2):249-265, 2000

[2] Y. P. Fallah, "A Model-based Communication Approach for Distributed and Connected Vehicle Safety Systems," 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, 2016, pp. 1-6. [3] H Nourkhiz Mahjoub, A. Raftari, R. Valiente, Y. P. Fallah, S.K. Mahmud, "Representing Realistic Human Driver Behaviors using a Finite Size Gaussian Process Kernel Bank," 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, Dec. 2019 [4] H Nourkhiz Mahjoub, B. Toghi, Y. P. Fallah, "A Driver Behavior Modeling Structure Based on Non-parametric Bayesian Stochastic Hybrid

Process," 2018 IEEE Vehicular Technology Conference (VTC-Fall), Chicago, IL, Aug. 2018

OTHER EXAMPLES AND APPLICATIONS

Investigating the existence of natural driving patterns corresponding to the sequences of the short-term Gaussian modes

Investigating more sophisticated rules to rank the transmitting nodes by each relaying node to balance between communication load and safety

REFERENCES

Architecture," 2018 IEEE Connected and Automated Vehicles Symposium (CAVS), Chicago, IL, Aug. 2018 [5] H Nourkhiz Mahjoub, B. Toghi, Y. P. Fallah, "A Stochastic Hybrid Framework for Driver Behavior Modeling Based on Hierarchical Dirichlet

[6] E. Moradi-Pari, H. N. Mahjoub, H. Kazemi, Y. P. Fallah and A. Tahmasbi-Sarvestani, "Utilizing Model-Based Communication and Control for Cooperative Automated Vehicle Applications," in IEEE Transactions on Intelligent Vehicles, vol. 2, no. 1, pp. 38-51, March 2017.