CAREER: Robust Perception and Customization for Long-Term Autonomous Service Mobile Robots

Joydeep Biswas University of Texas at Austin

Perception for Long-Term Autonomy

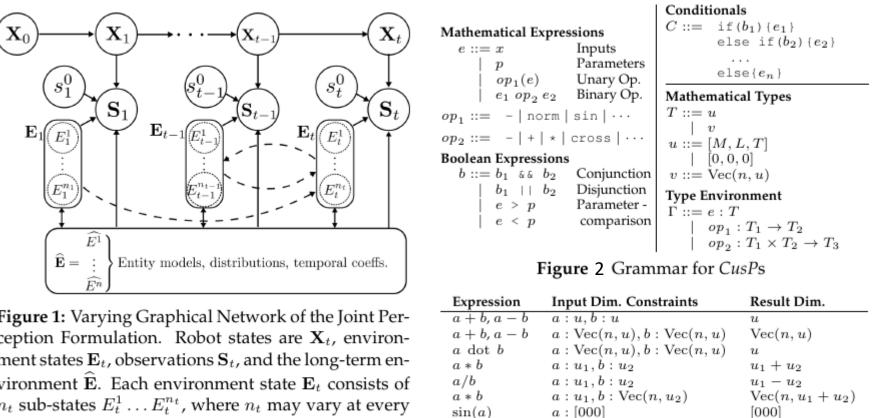
- How can a robot reason about possible reconfigurations of the world?
- How can a robot iteratively build probabilistic models of semantically meaningful entities over time?
- How can a robot perform real-time inference using such a formulation?

Introspective Perception

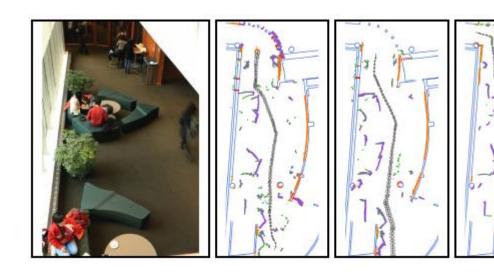
- How can a robot autonomously build models of competency of perception, and identify causal factors of competency?
- How can a robot improve competency over time?

End-User Customization

- How can a robot learn preferences from a minimal set of examples?
- How can a robot learn new tasks from minimal demonstration?

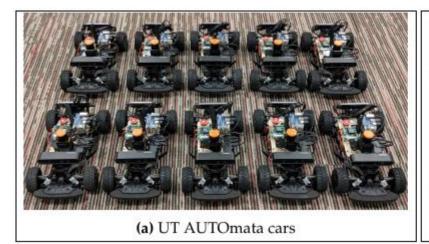

Thrust 1: The long-term joint perception formulation (LT-JPF) to reasoning about the state of the world in terms of its composing entities, and their long-term distributions. Thrust 2: Introspective perception (IPr) as a self-supervised approach to empower robots to identify perception failures by relying on

Societal Impact

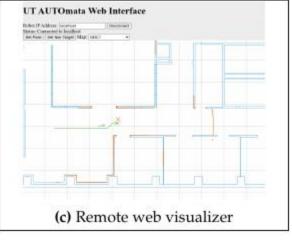

- Service robots deployed autonomously in real human environments over extended periods of time
- Reduced reliance on expert supervision
- End-user adaptability of service robots

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

Technical Formulation And Preliminary Results



ception Formulation. Robot states are X_t , environ n_t sub-states $E_t^1 \dots E_t^{n_t}$, where n_t may vary at every time-step. Varying nodes and correlations (dashed edges) are unknown a-priori.



online supervisory sensing or offline post-hoc analysis. Thrust 3: Physics-informed customizable program synthesis (PI-CusPS) as a class of symbolic approaches to generate and repair human-interpretable symbolic programs from a limited set of human guided demonstrations.

Teaching

Outreach: Introduction to computing with UT AUTOmata and robot soccer

Hands-on robotics with the UT AUTOmata:

Figure 3 Unit checking of mathematical operators

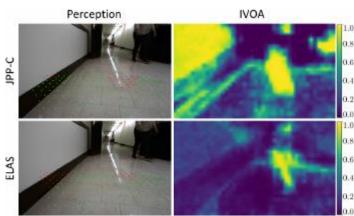


Figure 4 IVOA over two QPAs: JPP-C (top row) and ELAS (bottom). Left: QPApredicted obstacles (red dots) and free space een dots). Right: IVOA Predictions

-						
Algorithm	TE %	RE. (deg/m)	MDBF (m)			
IV-SLAM	5.85	0.523	621.1			
ORB-SLAM	9.20	0.558	357.1			
Figure 5 IV	-SLAM	vs. ORB-SLA	AM on real			
robot data: translation error (TE), rotation error						
RE), mean distance between failures (MDBF).						

Policy		Attacker	
roncy	(%)	N 78 778408 32 389204 25 750 87 750	(%)
LSTM-Full	78	778408	70
LSTM-Half	32	389204	61
LSTM-Synth	25	750	38
LDIPS	87	750	81
Figure 6 Perf	orman	ce vs. #	of exa

Ref LSTM LDIPS Ref 64 78

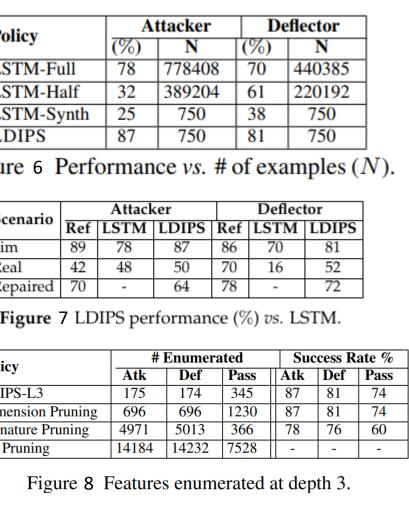

Policy	# Enumerated			
Uncy			Pass	A
LDIPS-L3	175	174	345	8
Dimension Pruning	696	696	1230	8
Signature Pruning	4971	5013	366	1
No Pruning	14184	14232	7528	

Figure 8 Features enumerated at depth

- Jarrett Holtz, Arjun Guha, Joydeep Biswas (2020). Robot Action Selection Learning via Layered Dimension Informed Program Synthesis. In Conference on Robot Learning
- Sadegh Rabiee, Joydeep Biswas (2020). IV-SLAM: Introspective Vision for Simultaneous Localization and Mapping. In Conference on Robot Learning
- Sadegh Rabiee, Joydeep Biswas (2019). IVOA: Introspective Vision for Obstacle Avoidance. In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on
- Jarrett Holtz, Arjun Guha, Joydeep Biswas (2018). Interactive Robot Transition Repair With SMT. In International Joint Conference on Artificial Intelligence (IJCAI)

Broader Impact

- Wider deployability of service mobile robots in human environments
- Curation of long-term datasets to identify lacksquareopen challenges
- Ability to conduct longitudinal studies of robots embedded in human environments

