Motivation

The complexity of the software in Cyber-Physical Systems (CPS) Is increasing
almost exponentially with time.

Challenge: The recent multiple software related recalls of automobiles and
medical devices indicate that the current software development methods may be
Inadequate for safety critical software applications.
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Model-Based Design (MBD) has proven to be a viable approach to tame the
complexity of developing software, especially, for CPS. However, testing for CPS
still remains an ad-hoc process.

Formalizing requirements for known safety critical software recalls
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Must model physical phenomena:
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Intake and Exhaust
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Strict requirements:
 Hard real-time optimal control ~10ms
« State-time behaviors that must not occur
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S-TaLiIRo Tool Suite

All the results are / will be implemented in the S-TaLiRo Tool Suite
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In general, determining that the outputs of the Model and the Implementation are
“close enough’, i.e., conformant, is application-dependent and relies on expertise.

) TR e g
of NS L

i
AN

Implementation
— — — Model

L

T | lul"lllllﬂlll.'-...

Fusl

n i ol nd 4 L ; ) T LS4 A N 1 . 1
D'E .-rl‘I £ Al r "llﬂ f‘ \ Al i AN N fJ‘n f .|"‘I ; 7 .-'lll r :.-" i II| " i
! 1 P [ f : S HE 1 |r I LY il Ir ] rir|F 1 r : 1 I ,r Hoefa l

1
cE R A
1
'III=||||:||
0.4 AL AL R R
- 1
|.=|
1
L 1
1 1

0.2 | | | | |
0 10 20 30 40 a0 a0

We propose (T, ], 1, €)-closeness as a generic conformance
appropriate for continuous-time, discrete-time, and hybrid-ti

Fit) a0 20
notion. This notion Is
me systems.

(T,J,t,£)-closeness: Consider two trajectories y, and y’ of £ and X',
0,/]>0,7>0,and e > 0, we say y and y' are (T, ]/, 1, €)—close if:

such that |t — s| < T and ||y (t,j)) —y'(s, )I| < & (and the symmetri

For all (t,j) in the support of y s.t. t < T and j <], there exists (s, j) in the support of y’,

respectively. Given T >

C notion)

N /
The largest (7, €) such that all trajectories of ¥ and X' are (T, ]/, 7, €)—close is the
conformance degree between X and ¥’

/Benefits of (T, ], t,)-closeness as a generic notion of conformance: \

for more targeted testing.
« Captures differences in timing characteristics as well as

& based on how well they conform to the Model.

* Only requires the ability to simulate the system — black boxes O.K.
« Can be tested early In the design cycle before all the instrumentation is in place

* Real-valued: can speak of a conformance degree and rank Implementations

state values
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More information www.tinyurl.com/Staliro

Falsification with model & code coverage

positionality

~(1,€)

— Property transfer between Com
(t, €)-close systems
Model 1 Model 2 12
y1 = Hy(xq, 1) <T;€ V2 = Hy(x3,u) )
, > 2y
Hy|= @7 Hy |= ¢
Theorem: If H; <, H, and H, &, ¢, (p —
then Hi Fo_ [¢];

Project Summary

This project develops a theoretical framework as well as software tools to support
testing and verification of CPS within a Model-Based Design (MBD) process.

The project's research comprises three components:

1.

2.

development of conditions on the algorithms and on the structure of the CPS for
Inferring finite-time guarantees on the randomized testing process;

the study of testing methods that can support modular and compositional system
design; and

Investigation of appropriate notions of conformance between two system models
and between a model and its implementation on a computational platform.

Vision: Supporting MBD at all stages

,Requiremen’rs . Deployment specifications and
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Informal System 1. Testing formal

Formal specification mining
Specifications System 2. Conformance testing:
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System: Specification: Specification:
If xo € [-1, 1]%\[0.85,0.95]? then Gio—@ A Gz —b Gio.21—a A Gig g1 —b
X=x-y ; 0.1t o where where
Efo,’e_ y cos(Zmy)-xsin(Zmx) + 0.1¢ O(a) =[-1.6,-1.4] x [-1.6,-1.4] O(a) = [-1.6,-1.4] x [-1.6,-1.4] x {B}
=y O(b) = [3.4,3.6] x [-1.6,-1.4] O(b) = [3.4,3.6] x [-1.6,-1.4] x {B}
y=-x+y

Initial conditions:
[-1,1] x [-1,1]

x02[0.85,0.95]? X, € [0.85,0.95]?

0 x € [0.85,0.95]? o
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Specification Mining

Given a parametric MTL formula ¢ 5] with a vector of m unknown parameters and a

system X, find the set W ={6" € O | X ¥ ¢[0"]}
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Non-Increasing robustness
with respect to 6

v+ [@[0]] (1)
min min f(0)+ if [o[0]](p) = O

0cO (x .
€O peL,(¥) 0 otherwise

Non-Decreasing robustness
with respect to {(60)

v — [¢10]] (1)
max max | f(0)+ if [o[0]](n) >0

0cO . ,
€O peL, (%) 0 otherwise
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In case of multiple parameters

) to be mined, we have “one-

sided” Pareto front.
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