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Cyber-Physical Systems (CPS) integrate devices that can interact with each other and the physical world around them. With CPS applications, engineers monitor the structural health of highways and bridges, farmers check the health of their crops, and ecologists observe wildlife in their natural habitat. Using sensory
side-channels (e.g., light, temperature, infrared, acoustic), an adversary can successfully attack CPS devices and applications by (1) triggering existing malware, (2) transferring malware, (3) combining multiple side-channels to increase the impact of a threat, or (4) leaking sensitive information. The project investigates
the sensory side-channel (e.g., acoustic, seismic, light, temperature) threats to CPS devices and applications and evaluates the feasibility and practicality of the attacks on real CPS equipment. The result is novel sensory side-channel-aware security tools and techniques for the CPS devices. Specifically, the principal
investigator (1) analyzes the physical characteristics of the sensory CPS side-channels to understand how the physical world impacts the cyber world of CPS devices; (2) investigates the information leakage through the sensory side-channels on the CPS devices; and (3) develops a novel IDS particularly designed to be
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