
Sixth Annual Cyber-Physical Systems Principal Investigators’ Meeting
Arlington, VA – November 16-17, 2015

Scientific Impact:
• New tools to enable interaction

with user data without revealing
sensitive metadata such as user
relationships or access patterns

• New definitions for
characterizing the leakage of
information and concrete
attacks to demonstrate the
potential harm Solutions:

• New PIR protocol with sublinear
computation and
communication that supports
database changes

• New queuing discipline that is
resilient to timing side channels.

• New private aggregation
protocol for federated graphs.

Challenges:
• Enable access and transmission of

content without leaking metadata.
• Derive aggregate statistics from

federated graph data without
revealing the graph.

Broader Impact and
Broader Participation:
• Collaboration with large

financial company to deploy
private federated aggregation
at scale.

• Current engagement with
vendors to incorporate
additional privacy features in
programmable switches.

Sebastian Angel
University of Pennsylvania

CAREER: Tools for building online services that hide metadata

• Scalability: How can the system support queries across
millions of devices? While it might be possible to build
an FA that operates over graphs using secure multi-party
computation across devices, these approaches do not scale.

To address these challenges, this paper introduces Mycelium,
the �rst FA system to support queries on massive graphs
distributed across a large number of participants. To address
scalability, Mycelium’s key insight is that, for many graph
queries, we can divide the computation into two steps: (1)
local computations that run in parallel on a small neighbor-
hood of each vertex and output a vector of local results, and
(2) a global aggregation step that combines the vertex-level
results into a single global output. This is analogous to how
frameworks such as Pregel [65] structure their queries, albeit
for di�erent reasons. Mycelium cannot support every Pregel
query because not all of them are di�erentially private, but
Mycelium’s computation model is still quite general.
To guarantee topology privacy, Mycelium needs to pro-

vide a way for users’ devices to communicate with each
other so that they can obtain the inputs needed to execute
their local computation (vertex program). This is di�cult in
many applications without disclosing the existence of the
communication to the aggregator. For example, the COVID-
19 exposure noti�cation systems use pseudonyms for each
device, and there is no obvious way to communicate with the
owner of a pseudonym once it has moved out of Bluetooth
range. Mycelium solves this problem by using the aggregator
as a rendezvous point, while preventing it from learning the
topology of the graph in the process. The key idea is a new
mix network and a telescoping circuit mechanism inspired
by Tor [31] that allows devices to forward their requests via
other devices until the requests reach their destinations (§3).
To guarantee neighbor data privacy, Mycelium uses homo-
morphic encryption to aggregate encrypted histograms that
are su�cient to answer many queries of interest. We will
show several examples of such queries in Figure 2.
A key challenge with Mycelium’s mix network is that

devices are unlikely to all be simultaneously online, so a fast
mixing round could miss some devices—with consequences
for both privacy and accuracy. To compensate, Mycelium
uses long communication rounds (on the order of hours),
so all devices have a chance to contribute their answer; the
aggregator bu�ers messages as needed. Because of the long
delays, Mycelium is not suitable for interactive queries; it
is intended for longer-term social studies, such as disease
spread, investment patterns, or information propagation.
We have implemented a prototype of Mycelium, and we

use a combination of small-scale benchmarks and extrapo-
lation to show that it can scale to millions of devices. The
cost to the aggregator is well within the means of a typical
data center, and the costs to individual devices are moderate:
for a typical query, each device will incur around 430 MB of
bandwidth and spend 15 minutes of computation. A small,

Analyst

Figure 1.Millions of participants form a graph. An analyst submits
queries to an aggregator who facilitates computing on the graph.

randomly chosen set of devices will need to spend more, but
the costs are comparable to what prior FA systems [80, 81]
require at similar scales, even though these systems do not
support graphs. In summary, our contributions are:
• A mix network with veri�able telescoping circuits (§3);
• Mycelium: the �rst FA system to support graphs (§4);
• A prototype implementation (§5) and experimental eval-
uation (§6) of Mycelium.

2 Federated analytics over graphs
We target a setting (illustrated in Figure 1) where there are
a large number of participants, each of whom has a per-
sonal device that contains sensitive information (e.g., �nan-
cial records, demographic information, health details). Each
participant is identi�ed by one or more pseudonyms, and
participants may know some of the pseudonyms of other
participants. For instance, in the case of Google and Apple’s
Exposure Noti�cation System (GAEN) [2], the devices are
users’ smartphones; the sensitive information includes users’
infection status, time of diagnosis, and locations visited; the
pseudonyms could be the Rolling Proximity Identi�ers (RPIs),
which each phone broadcasts to other nearby phones via
Bluetooth Low Energy, or some �xed identi�er. Overall, we
can think of this data as representing a large graph, with
one vertex for each participant and a directed edge (p1, p2)
whenever p1 knows at least one of p2’s pseudonyms.

There is also a central aggregator, who wishes to run large-
scale queries over this graph and is willing to coordinate
the necessary computation. Note that these queries are not
real-time queries; at this scale, they may take hours or days
to complete. We assume that the aggregator has substantial
computational and bandwidth resources, perhaps in the form
of a data center. The aggregator works with at least one
analyst, who formulates the queries to be run. In the case
of GAEN, the aggregator could be Google or Apple, or the
government agencies that run the Diagnosis Servers; the
analysts could be some carefully vetted epidemiologists.
We assume that devices are usually (though not always)

online. Devices could be behind NATs or �rewalls, or they
2

Our second goal is to design a scheduler that provably guaran-
tees privacy, which is a notion of strong isolation across clients.
While there is already one scheduling discipline that provides this
guarantee, namely time division multiple access (TDMA) and its
randomized and weighted generalization [36] in which clients are
allocated a window of time on which to send their packets, it has
several drawbacks. Chief among them is that TDMA taxes all clients,
in the sense that even clients who are indi�erent about privacy
must still pay the cost of using TDMA. Not only is this bad for
privacy-indi�erent clients, it also bad for the collective, as TDMA
is not work conserving and wastes bandwidth when clients idle.

To address these drawbacks, we introduce a new hybrid schedul-
ing discipline called indi�erent-�rst scheduling (IFS). The key aspect
of IFS is that clients who satis�ed with the status quo and do not
require privacy (e.g., tenants in a data center who are not running
sensitive workloads) should continue to receive as good a service
(or even better) than that provided by existing schedulers such as
FIFO. On the other hand, clients who require privacy guarantees
can opt into IFS’s private mode and avoid leaking any information
through the scheduler’s decisions, at the cost of increased latency
for their packets. Furthermore, IFS lets clients toggle between in-
di�erent and private modes (e.g., a client may engage private mode
when it starts a VoIP call). While transitions can be observed by an
attacker and might leak the user’s intent to be private, they do not
leak the user’s workload characteristics.

Our last goal is pragmatic. We ask to what extent we can imple-
ment privacy-preserving scheduling disciplines on programmable
switches. We �nd that neither TDMA nor IFS are amenable to imple-
mentation in existing architectures, since, among other limitations,
switches do not support pauses or random sampling. If we look
at existing Intel To�no switches, for example, the best we could
manage is to provide privacy to client’s outgoing packets (e.g., a
client’s request to an HTTP server leaks no information, but the
corresponding response might). This is problematic since responses
can leak just as much or even more information than requests.
However, we show that a recently proposed queuing architecture
for programmable switches called push-in-�rst-out (PIFO) [55] has
all the building blocks that we need to build IFS and TDMA. We
implement both of these schedulers on a PIFO simulator [4] and
show that IFS achieves the best of both worlds: it provides better
expected packet latency than FIFO or round robin to indi�erent
clients, and the same privacy guarantees and better latency than
TDMA for private clients.

In summary, this work makes the following contributions:
• We replicate prior timing attacks on recent hardware and show
that some leakage exists even on fast switches.

• We propose IFS, a new scheduling discipline that guarantees
privacy to clients who want it without burdening those who do
not, and which has many desirable properties.

• We show how to instantiate IFS in switches that support push-
in-�rst-out (PIFO) [54, 55].

• We evaluate our implementation of IFS and �nd that its perfor-
mance is better than existing schedulers for both indi�erent and
private clients, while simultaneously protecting private clients
from timing side channels.

9LFWLP

),)2�TXHXH

$WWDFNHU

6HUYLFH

1HWZRUN

Figure 1: An attacker can learn whether the Victim is send-
ing packets to some service (and potentially which service)
by probing one of the switches used by the victim. Since the
switch has limited resources it must queue the attacker’s
packets whenever there is contention. If the switch uses a
FIFO queuing discipline and the attacker’s packets arrive af-
ter the victim’s, the attacker can observe changes in timing
and infer that the victim is sending packets and the size of
the burst of tra�c [33].

2 MOTIVATION AND RELATEDWORK
This section discusses proposed attacks on schedulers and prior
proposals to address the resulting privacy violations.

2.1 Timing attack on switches and schedulers
Our work is inspired by the observation of Kadloor et al. [33] that
if a client is accessing content on the Internet while traversing a
switch or router that uses a �rst-in-�rst-out queuing strategy, an
adversary could issue a series of probes to this switch to determine
when the victim client is sending packets (and their size). The high
level idea is that the switch will enqueue the attacker’s probes
and will process them once it has spare cycles (presumably after
it has processed any packets from the victim that arrived before
the attacker’s). The probes could be simple ICMP packets (though
some switches treat ICMP tra�c di�erently), but could also be TCP
or UDP packets sent to a destination that the attacker controls and
that ensures the attacker’s tra�c traverses the shared switch. Based
on how long it takes for the attacker’s probes to be processed, the
attacker can infer the number of packets sent by the victim. This
information can allow the attacker to learn which Web sites or
services the victim is accessing, or even what phrases are spoken
over VoIP calls, even if the tra�c is encrypted [15, 27, 45, 57]. This
attack can also be conducted within a data center thereby allowing
a tenant to infer the workload characteristics of another tenant that
uses the same network infrastructure. Figure 1 depicts this attack.

Two similar attacks include the work of Gong and Kiyavash [29]
that shows that information leaks when users share a job event
queue, and the work of Ghassami and Kiyavash [28] that shows
how to create a covert channel between two otherwise isolated
processes in a data center. In this latter work, even if the processes
are given their own dedicated hardware, if the underlying physical
network is shared, then one process can send a covert message
to the other via the same strategy described above. The sender
could encode their message by modifying the sizes or timing of
seemingly innocuous Web tra�c, after which the recipient could
send probes to the shared switch to retrieve it. This might not
trigger any red �ags in a �rewall or other monitoring system. In

Mycelium: Support queries like “if a device is
infected with malware, on average, how many
of their contacts are infected within a week?”
without revealing the social graph.

IFS: Prevent packets queuing at switches
from leaking information about other traffic
via timing side channels

