
2021 NSF Cyber-Physical Systems Principal Investigators' Meeting
June 2-4, 2021

CAREER: Trustworthy and Adaptive Intrusion Tolerance Capabilities in Cyber-Physical
Critical Infrastructures

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1453046&HistoricalAwards=false
PI: Saman Zonouz (Rutgers University)

CPS Control Behavior Integrity Monitor for distributed industrial control systems.
• Unlike previous state estimation approaches, it does not abstract the behavior of the

cyber-components (i.e., PLCs). Instead, it precisely simulates the state of all PLCs.
• By monitoring the input and output behavior of the entire ICS, SCADMAN can detect

inconsistencies within the actions of PLCs.
• To enable a global view of the entire ICS, a consolidated control program of all PLCs in

the system is generated to resolve functional dependencies between individual
programs. The consolidated control program in conjunction with a physical state
estimator is used to determine a set of acceptable states at any particular point in time.

• The objective of this research is to develop an integrated cyber-physical tolerance engine that can model, predict, and take
proactive countermeasures against complex security incidents in CPS platforms in a near-real-time manner.

• Our solution enables operators to maintain important infrastructural operations despite sophisticated cyber-originated attacks
with consequences in cyber and/or power platforms.

Award ID#: 1453046

Broader Impact
• We have worked with Siemens Corp for

Tech Transfer initiatives on several proejcts
including PLC code verification and ICS
intrusion detection and response systems.

• PI Zonouz has worked with a female high
school student (Sruthi Suresh) throughout
regular meetings on related CPS Security
topics. She is currently admitted to Cornell
University to start in Fall 2021.

Central Control

(SCADA)

PLC 1 PLC 2

PLC 3
I/O Mod

Firmware

Control

Logic (CL1)

I/O

Firmware

Firmware

CL2

CL3

I/O

Historian

HMI

Scadman-Monitor

CL1

CL2 CL3

 𝑥 𝑘 + 1

Sensor Actuator Network Control-flow Data-Flow

Scadman

ITCPS

S
ta

te
E

s
t.

Figure 2: SCADMAN system overview and architecture. The central control (SCADA) is extended with a component called
SCADMAN-MONITOR that monitors the behavior of the distributed ICS and can detect compromised controllers in the system.

are usually known by the operator of the plant. Additionally,
several recent works have developed methods to extract and
generate such models, which can be used with SCADMAN [25],
[27].

Figure 3: SCADMAN scan cycle. For each interaction of a PLC
with the physical process, the SCADMAN-MONITOR performs
the corresponding operations using the state estimated based
on the system’s past events. Afterwards, consistency between
both sides (CPS and SCADMAN-MONITOR) is checked, and
an alarm is raised when a deviation is detected.

SCADMAN-MONITOR Operation: SCADMAN runs in parallel
with the CPS (on the left in Figure 3) and compares the sensor
readings and actuation commands it receives over the network
from all PLCs to a set of valid state determined by SCADMAN-
MONITOR–allowing for the validation of the behavior of the

CPS (i.e., distributed ICS).

SCADMAN-MONITOR works in iterations, similar to the
scan cycle based operations of PLCs. During each iteration
the current system state and actuation commands are fed into
the state estimator of SCADMAN-MONITOR, in parallel the
physical process in the CPS evolves, based on the current
system state and past actuation commands. The state estimator
calculates the state space into which the system should have
evolved based on its history, in Figure 3 the state variables
S1 . . . S3 have been predicted to lay within some given interval
of possible values. The fuzziness of the state space can be, for
instance, due to impressions of the physical model used in state
estimator or due to (small) errors in the input value. However,
SCADMAN can tolerate these impressions.

The actual physical state in the CPS is read by the
PLCs’s sensors and processed by them. In parallel, SCADMAN-
MONITOR executes the consolidated PLC using the estimated
state as input. Since the input state can be fuzzy the execution
of SCADMAN-MONITOR has to account for it. By using a
technique called error-margin multi-execution the execution
is performed over the entire range of possible input values
(see Section V-C for details). By executing–given the cur-
rent system state context–all valid control-flow paths in the
consolidated PLC SCADMAN-MONITOR determines the set of
possible outputs. Again, the outputs (O1 . . . O3 in Figure 3)
are represented as intervals or sets of allowed values.

When SCADMAN-MONITOR receives the sensor reading
and actuation command of the PLCs from the CPS it per-
forms the consistency check. If all PLCs were executing
correctly–and all sensors and actuators operated correctly–the
reported values must be a subset of the outputs determined
by SCADMAN-MONITOR. Any deviation indicates an incon-
sistency within the behavior of the CPS and SCADMAN rises
an alarm.

If the system was found to be correct the system state
reported by the PLCs is accepted as the current system state
and serves as input for the next iteration of SCADMAN-
MONITOR. This is necessary to prevent the system state
calculated by the state estimator to gradually deviate from the

6

t

x

// 𝑝1 = &𝑠
𝑥1 = load 𝑝1
𝑏1 = fcmp 𝑥1, 800.0
br 𝑏_1, IF_THEN, IF_ELSE

𝑥1 = 𝑥1 + ε

𝑥1 = 𝑥1 - ε

Sensor

1

< Threshold

Actuator

1

= OnActuator

1

= Off

SCADA

ICS Network

MATIEC

+

LLVM

C
o

n
s
i
s
t
e

n
c
y

C
h

e
c
k
e

r

Executable State Estimator

U
U

!

State_A

1

= {On, Off}

State_S

1

= [799.3, 800.5]

t

0

800.5

799.3

Actual

Estimated

Error Margin

!

Alarm

Actuator

Sensor

C
o

n
s
o

l
i
d

a
t
e

d

S
T

F

i
l
e

Fork

Branch Taken

Control Flow

Figure 5: SCADMAN implementation overview. The consolidated PLC code is compiled in combination with MATIEC and LLVM
to an executable. The ICS network feeds sensor values into SCADMAN-MONITOR to simulate the PLC scan cycle and check
for consistency. The updated outputs are fed from the executable to the state estimation as well. Any deviations in the expected
behavior is alerted to the SCADA monitor.

slight deviations will be propagated to the associated physical
model.

To tackle this problem and reduce false positives, we check
whether the SCADMAN-MONITOR behaves differently in terms
of actuation assuming an error in the sensor readings. We
introduce error-margin multi-execution to detect differences in
actuation. First, we define error-margins for sensors. Second,
we detect whether a PLC performs different actions, when
executed with an error applied to the sensor value. A difference
in the performed actions, are only observed when the PLC is
taking a different control-flow through the program execution.
Therefore, we need to detect whether the control-flow of the
PLC depends on a sensor value (cf. code snippet in Figure 5).

We define an error-margin, ±✏, for each of the sensors. We
then check whether the SCADMAN-MONITOR performs differ-
ent actuations when applying ±✏ to the sensor reading, which
we denote as s. Using interval arithmetic, one can propagate
the error-margin through the executed program. However, if
a branching condition depends on the sensor value, possibly
two branches must be executed if the decision is inconclusive.
For example, the branching condition is (s < N), then the
execution could take both branches if s+✏ � N and s�✏ < N .
Therefore, we need to execute multiple paths through the
control program. Symbolic execution would allow us to use
symbolic sensor values and constrain them into the error-
margin and execute multiple paths at once. However, current
symbolic execution engines have known limitations when it
comes to solving constraints for floating point operations [48].
Typically sensor values are represented as floating point types.
To overcome this limitation we introduce multi-execution that
operates solely on concrete floating point values within the
error-margin applied and can execute multiple branches in
parallel.

We integrate this error application into the consolidated
PLC code simulation at the LLVM level. Whenever a con-
ditional branch instruction depends on a sensor value s, we

introduce instrumentation that forks the execution of the PLC
code. In one fork we continue without an error, so s0 = s. In
the second and third fork we continue with the upper bound
of the error-margin s0 = s+ ✏ and the lower-bound s0 = s� ✏,
respectively. Using only the upper and lower bound of the error
interval [s � ✏, s + ✏] is not sufficient. To be able to evaluate
equality comparisons we need to also continue one fork of
the code on s (without applying any error). At the end of
the scan cycle we merge all forks and continue without any
error applied in the next scan cycle. We create O(3#sensors)
forks per scan cycle. While this is a significant overhead in
the worst case, our evaluation, however, shows the practicality
of this approach. We can use several optimizations in practice
to reduce the number of concurrent forks. For example, if two
forks take the same control-flow path, we can stop executing
one of the two forks. Most basic blocks have only two outgoing
edges, therefore we can usually kill one of the forks directly
after they have taken the branch. In fact, we do not need to
use the multi-execution approach until we detect a discrepancy
in the actuations. We can then selectively re-execute only the
violating scan cycle in multi-execution mode to get a more
accurate result on the actuation.

Instead of producing one value for an actuator we now
get a set of values for each of the actuators. If the actuation
of the real system is not in the set which is reported by the
consolidated PLC code we detected an inconsistency which is
beyond the errors-margins and report an attack. Incorporating
state estimation errors allows SCADMAN to minimize false
positives that would arise with slight errors in the model of
the physical system.

To detect whether a branch condition depends on a sensor
value, we perform backwards data-flow analysis, starting from
the condition of the branch. We use the single static assign-
ment (SSA) of LLVM intermediate code to perform intra-
procedural data-flow analysis. Inter-procedural analysis is not
implemented in our current prototype as the code generated by
MATIEC does not require inter-procedural data-flow analysis

9

