
CASS: Configurable, Adaptive, and Scalable Swarm of Aerial and Ground Robots for Collaborative Smart Agriculture

Kiju Lee, Muthu Bagavathiannan, and Juan Landivar Texas A&M University, Texas A&M Engineering Experiment Station, Texas A&M AgriLife Research and Extension Centers

Challenges in Agriculture:

- High demand for increasing productivity in agriculture due to world population growth and increased living standards
- Difficulties addressing labor shortage, increasing climatic variability
- Large machinery-based modern agriculture in the U.S. causing reduced soil productivity and long-term negative environmental impacts

Technical Approach:

Integrated CASS system based on Robot Operating System (ROS) 2, combining (1) a scalable physical robotic platform with ground and aerial robotic agents, (2) a digital twin system (high-fidelity and low-fidelity simulations), and (3) user interface (UI) modalities.

Societal Impact & Agricultural Benefits:

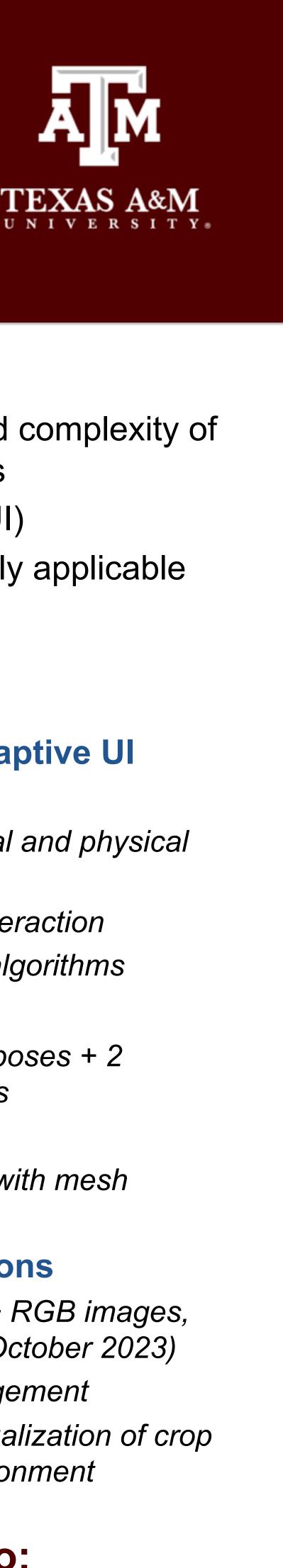
- Improving profitability of the producers
- Reduced waste, optimal use of water and fertilizer, and reduced use of pesticides
- Localized, adaptive monitoring, inspection, and intervention \rightarrow long-term ecological and environmental benefits

2023 FRR & NRI Principal Investigators' Meeting May 2-3, 2023

Scientific Impact:

- to agricultural as well as other areas

Key Innovations & Outcomes:



alization of a crop field and Unity simulation for digital twin development

Impact on Education and Outreach:

- Diversity and multidisciplinary research team
- Serving diverse on- and off-campus communities a Hispanic Serving Institution (HSI)
- Participation of students with disabilities
- STEM summer camp for first-generation students and those with a low-income background

• Many low-cost, small robots that are configurable to fit the size and complexity of diverse agricultural tasks \rightarrow offering flexible and adaptive solutions Integrated system architecture with hybrid swarm user interface (UI) • Embedded swarm and individual robot control algorithms \rightarrow broadly applicable

Virtual-physical hybrid swarm simulator & adaptive UI

- ROS 2-based distributed system architecture
- Hybrid swarm simulator supporting a swarm of virtual and physical robots to collaborate and interact with each other.
- MR-based UI for adaptive user roles and intuitive interaction
- Embedded swarm decision-making and navigation algorithms

Development of physical CASS platform

- UGVs: 8 ground vehicles for general monitoring purposes + 2 specialized ground units for agriculture-specific tasks
- UAVs: 1 testbed + several commercial units
- Working on increasing the number, equipping them with mesh network devices, and developing software

Digital twins for 3D visualization and simulations

- Ongoing data collection RGB images from UAVs + RGB images, LiDAR data, and depth images from UGVs (April – October 2023)
- Unmanned Aerial System (UAS) hub for data management
- Aerial images collected from UAVs to create 3D visualization of crop fields – to be used to create a Unity simulation environment

	Research Team & Contact Info:
as	 PIs: Kiju Lee (Lead PI), Muthu Bagavathianna Landivar
	 Co-Investigators: Mahendra Bhandari, Robert Hardin, John Cason, Dugan Um Email: kiju.lee@tamu.edu Phone: 979.458.6479

Award ID#: USDA-NIFA 2021-67021-35959

an, Juan