
Fast Optimizing Control for Non-Convex State Constraints

using Homotopy Properties

Damian Kontny1 and Olaf Stursberg1

Abstract— For optimal point-to-point control of linear sys-
tems, this paper investigates how control strategies should be
rendered online if non-convex state constraints are suddenly
detected during execution. The challenge is to compute a
modified strategy with low effort while maintaining a close-
to-optimal control performance. The proposed solution is to
synthesize offline a range of trajectories which are homotopic
to the optimal unconstrained solution. Upon detection of the
state constraints (which may represent an obstacle to be
circumvented by a mobile vehicle), a sub-optimal yet feasible
homotopic trajectory is selected by a fast iteration which avoids
to solve a time-demanding constrained optimization problem
online.

I. INTRODUCTION

The scope of this paper is to control linear dynamic sys-

tems from an initial state into a target state while minimizing

control costs and satisfying time-varying non-convex state

constraints. A motivating example is to steer a vehicle or

a robot end effector cost-optimally into a target, assuming

that – during motion – a sensor detects an obstacle with

which a collision must be avoided. The task is then to find a

feasible path and control strategy leading to a small increase

of motion costs very quickly. The obvious solution is to

formulate and solve a state-constrained open-loop optimal

control problem. Even for optimization over relatively small

time horizons, a timely solution will not be feasible for many

problem instances due to the presence of the (often) non-

convex constraints. The objective of this paper is thus to

explore means to decompose the problem into an online and

an offline part such that the computation times for the latter

are acceptably small.

Constrained point-to-point optimization problems are

commonly solved by direct optimization methods for reasons

of speed. One established method based on the solution

of constrained optimization problems is model predictive

control (MPC) (see e.g. [12]). In recent years, considerable

effort has been spent on efficient solution of the optimization

problems: efficiency may be increased through replacing

state constraints by penalty terms or barrier functions [17],

[15], or by use of move-blocking strategies which fix the

inputs over a certain period of time [6]. The exploitation

of block diagonal structures in the Hessian and Jacobian

matrices, combined with direct multiple shooting can reduce

computation time as well [9], [3].

Partial financial support by the European Commission through the project
UNCOVERCPS (grant No. 643921) and the DFG through the project ROCS-
Grid is gratefully acknowledged.

1Control and System Theory, Dept. of Electrical Engineering and
Computer Science, University of Kassel (Germany). Email: {dkontny,
stursberg}@uni-kassel.de

While for convex search spaces significant progress has

been made, the situation for the steering scenario with

collision avoidance (as mentioned above) is different, as the

presence of obstacles leads to non-convexity of the admissi-

ble space. The option to solve the problem by techniques

of nonlinear programming (such as SQP) often leads to

large computation times and trajectories which are far from

optimal. An alternative is the formulation of mixed-integer

programs (MIP), in which the admissible space is split into

sets of convex regions, and a feasible sequence of such

regions is mapped into binary variables [1], [4]. Solvers for

these problems determine optimal sequences by techniques

of branch-and-bound or branch-and-cut with embedded lin-

ear, quadratic or nonlinear programs. But even for relatively

small problem instances, the combinatorial complexity limits

the applicability in real-time. To avoid the online solution of

constrained optimization problem, methods of explicit MPC

where developed [16], [18]. They use, e.g., multi-parametric

programming within offline computation of suitable con-

trollers by splitting the solution space of the parametric

program into regions with constant of affine solution. For

this method, the reduced effort for online computation is

paired with high memory requirements, and thus limited to

low system dimensions and/or time horizons.

With respect to trajectory planning in non-convex spaces,

a variety of relevant publications originate from the field of

human robot interaction. An important and established class

of path planning algorithms is that of potential field methods

[8], which however does not aim at optimal solutions. Cell-

decomposition methods compute feasible paths by a se-

quence of free cells [13], and apply graph search algorithms

afterwards. These methods are restricted by the combinatorial

complexity arising from the state dimension and from time-

varying constraints. For multiple DOF-robots, the problem of

mapping obstacles into the configuration space is critical, and

algorithms like rapidly Exploring Random Trees (RRT) [10]

and RRT* [7], [5] were developed. These methods search

for collision-free trajectories in the configuration space by

sampling, but they commonly do not consider the system

dynamics.

In contrast to existing work, this paper approaches the

named problem by a method which computes offline lin-

ear time-varying quadratic state feedback regulators for the

purpose of transitioning between homotopic trajectories. In

online execution, values of the homotopy parameters for

excluding collision with the obstacle are determined algo-

rithmically with low effort. In literature, the use of homotopy

properties in optimization is limited to unconstrained cases



and solution by model approximation, i.e. to cases which are

quite distinct from the setting considered here [14], [11].

The following parts of the paper first introduce the con-

sidered type of homotopic functions (Sec. II), then formulate

the problem (Sec. III), describe the offline computations

(Sec. IV), explain the online modification of control strate-

gies (Sec. V), and show numerical results (Sec. VI).

II. HOMOTOPIC FUNCTIONS

The class of systems under consideration in this paper are

discrete-time linear systems:

xk+1 = Axk +Buk, (1)

with time index k ∈ N0, state vector xk ∈ R
nx , input vector

uk ∈ R
nu , as well as state and input matrices A and B.

For a finite time domain T = {0,1, . . . ,N}, N ∈ N, let the

state and input trajectories be denoted by x̂ = (x0, ...,xN)
and û = (u0, ...,uN−1). Now consider nc + 1 different pairs

of input and state trajectories (ûi, x̂i), i ∈ M := {0,1, ...,nc}
for (1). The different trajectories are collected in a set X :=
{x̂0, ..., x̂nc}, where x̂0 denotes a trajectory which is optimal

with respect to a given performance measure, and the other

trajectories are called base trajectories. They are chosen to

span a region around x̂0, in which the circumvention of an ob-

stacle can take place. The base trajectories can be determined

by, e.g., an open-loop optimal control problem with different

weights of the state vector or by considering a region of

possibly occurring obstacle positions . Furthermore, these

base trajectories can be readily computed offline with convex

constraints like speed or acceleration limits. All trajectories

of X have the same initial and final states xi
0 = xs, xi

N = x f ,

i ∈ M . A trajectory x̂i can be interpreted as the image of a

function: x̂i = F i(ûi). The following definition now defines

homotopic functions in between of the trajectories x̂i:

DEFINITION II.1 For a set of nc + 1 continuous functions

F i :Rnu×T →R
nx×T , i∈M , a vectorized homotopy is defined

by: H :
(

R
nu×T

)nc × [0,1]nc → R
nx×T . The second argument

is a vector of homotopy parameters λλλ = (λ 1, ...,λ nc)T with

λ i ∈ [0,1]. The linear vectorized homotopy function is given

with F = (F1(û1)−F0(û0), ...,Fnc(ûnc)−F0(û0))T and with

λ 0 := 1−∑
nc
i=1 λ i according to:

H(û0, . . . , ûn
c,λλλ ) =

nc

∑
i=0

λ i ·F i(ûi)

= F0(û0)+
nc

∑
i=1

(F i(ûi)−F0(û0)) ·λ i = F0(û0)+F ·λλλ (2)

△

The definition states that homotopic trajectories are linear

interpolations between the optimal trajectory x̂0 and the base

trajectories x̂i, i∈M . If e.g. λ i = 1 is chosen, while the other

components of λλλ are zero, trajectory x̂i is obtained by (2).

If convex constraints were made on the base trajectories the

homotopic trajectories also satisfy these constraints because

of the linearity in interpolation. Since (2) relates to complete

trajectories, a homotopic state xk(λλλ k) at a single point of time

k lies in between the states xi
k, i ∈ M , and is identified by

the homotopy value λλλ k. Therefore the homotopic states as

well as the inputs at time k can be written as:

xk(λλλ k) := x0
k +Dxk

λλλ k, uk(λλλ k) := u0
k +Duk

λλλ k, (3)

with λλλ k := (λ 1
k , ...,λ

nc

k )T ∈ R
nc denoting the vector of

homotopy parameters at time k, and matrices Dxk
=

(x1
k − x0

k , ...,x
nc

k − x0
k) ∈ R

nx×nc , and likewise Duk
= (u1

k −
u0

k, ...,u
nc

k −u0
k) ∈R

nu×nc for k ∈ T . If xk(λλλ k) has a constant

homotopy value over time denoted by λ̄λλ , the resulting

trajectories are denoted by x̂(λ̄λλ ), and û(λ̄λλ).

III. PROBLEM DEFINITION

For defining the problem, assume the situation that the

system follows the optimal trajectory x̂0 from x0 to xN , and

that an intermediate time k∗ ∈ {1, . . . ,N −1} exists at which

an obstacle Px is detected, preventing to follow x̂0 further

(i.e. x0
k ∈Px for at least one k ∈ {k∗+1, . . . ,N−1}). Let the

obstacle be defined as a polytopic region Px := {x| Cx ≤
d} ⊆R

nx , with C ∈R
c×nx and d ∈R

c. Here, Px is assumed

to be static for k ∈ {k∗, . . . ,N}. Obviously, x0
k∗ /∈Px and x0

N /∈
Px is required to admit a feasible solution. Upon obstacle

detection in xk∗ = x0
k∗ , the goal is to determine feasible

optimized trajectories x̂∗ = (x∗k∗ , ...,x
∗
N) ∈ R

nx×(N+1−k∗) and

û∗ = (u∗k∗ , ...,u
∗
N) ∈ R

nu×(N−k∗), which avoid collision but

ensure that the final state is xN = x f . The selection of the

best among the feasible trajectories is based on the following

quadratic performance criterion:

J(xk∗+ j, uk∗+ j) =
N−1−k∗

∑
j=0

(xk∗+ j − x f )
T Q(xk∗+ j − x f )

+ (uk∗+ j − u f )
T R(uk∗+ j − u f ), (4)

with positive-definite weighting matrices Q∈R
nx×nx and R∈

R
nu×nu . With J := {0, ...,N−1−k∗}, the problem can then

be stated as:

min
xk∗+ j , uk∗+ j

J(xk∗+ j, uk∗+ j) (5)

s.t. (1), xk∗ = x0
k∗ , xN = x f , xk∗+ j /∈ Px. ∀ j ∈ J .

The values xk∗+ j and uk∗+ j denote the states and inputs

at time k∗ + j, with j ∈ J denoting the future time steps

counting from k∗.

The problem stated here is non-convex. As remarked in

Sec. I and illustrated in Sec. VI for an example, the solution

by MIP, or specifically mixed-integer quadratic programming

(MIQP), is a common approach. It leads to large computation

times, due to formulating collision avoidance by binary

variables for any j ∈ J . The objective of the method

presented below is to find a close to optimal solution with

significantly lower computational effort as with MIQP. The

idea for circumvention of Px is to: (i) select a homotopic

trajectory x̂(λ̄λλ ), which avoids an intersection with Px, and

(ii) to design controllers offline that realise the transition

to the trajectory x̂(λ̄λλ ) from the actual executed one. For

enabling that a solution to the problem can be found in step

(i), the following assumption is stated.



ASSUMPTION III.1 Let the set of trajectories X contain at

least one trajectory x̂i, i ∈ M , such that for x̂i
k∗+ j ∈ x̂i no

collision with the obstacle occurs: xi
k∗+ j /∈ Px, ∀ j ∈ J .

This assumption is immediately justified by the fact that

one cannot hope to find a feasible circumvention of Px if

the whole admissible space (as constructed by the choice of

X ) is blocked. The assumption is not sufficient for finding

a feasible solution, since it must be ensured also in step (2)

that the transition to x̂(λ̄λλ) is achieved without intersecting

Px.

IV. OFFLINE CONTROLLER SYNTHESIS

This section first covers the part of the solution procedure

which can be accomplished offline, namely the computation

of controllers to transition to new vectors barλλλ . Towards this

goal, the dynamic system is first expressed in the space of

homotopy parameters, leading to a linear time-varying (LTV)

system. Then, semi-definite programming synthesizes state

feedback controllers for realizing transitions in the λλλ -space.

A. Transformation into the homotopy space

Consider the task of steering (1) from a state xk∗ (corre-

sponding to a momentary vector λλλ k) to a future state on a

homotopic trajectory referring to λ̄λλ . While the inputs for the

currently executed trajectory and the targeted one are known

from the homotopy function (2), the transition between these

trajectories requires additional inputs δuk, leading to:

ũk(λλλ k) := uk(λλλ k)+ δuk. (6)

This superposition may lead to signals ũk(λλλ k) which are not

in the set of homotopic input trajectories according to (3).

With the homotopic states xk(λλλ k) in (3) and the inputs

ũk(λλλ k) in (6), the system dynamics is written as:

xk+1(λλλ k+1) = Axk(λλλ k)+Bũk(λλλ k), (7)

for k ∈ {0, ...,N − 1}.

ASSUMPTION IV.1 Matrix B is invertible

This assumption ensures that any homotopic state

xk+1(λλλ k+1) at k+1, can always be reached from a homotopic

state xk(λλλ k) with the system dynamics (1) and the input (6).

For transferring (7) into the λλλ -space, the combination of

(3), (6), and (7) leads to:

Dxk+1
λλλ k+1 + x0

k+1 = A(x0
k +Dxk

λλλ k)+B(u0
k +Duk

λλλ k + δuk)
(8)

⇔ Dxk+1
λλλ k+1 = (ADxk

+BDuk
)λλλ k +Bδuk (9)

⇔ Dxk+1
λλλ k+1 = Dxk+1

λλλ k +Bδuk. (10)

The last equation represents an LTV-system with state λλλ k,

input δuk, and a time-dependent and bounded matrix Dxk+1

for k ∈ {0, ...,N − 1}.

ASSUMPTION IV.2 The number of base trajectories equals

the system dimension: nc = nx.

This assumption1 is reasonable in order to obtain a full-

dimensional space for circumventing Px. A positive side-

effect is that Dxk
∈R

nx×nx and its inverse D−1
xk

is non-singular

(since the trajectories in X differ, see Sec. II). Thus, λλλ k+1

follows explicitly from (10):

λλλ k+1 = λλλ k +D−1
xk+1

Bδuk. (11)

This equation describes the transition between different ho-

motopic trajectories, and leads to xk+1(λλλ k+1) via (3).

B. Optimization-based controller synthesis

For realizing the transition between homotopic trajectories

online, control laws with time-varying state feedback matri-

ces Kk ∈ R
nu×nc are synthesized offline:

δuk :=−Kk(λλλ k − λ̄λλ ), (12)

The control law drives the system to a desired value λ̄λλ , or

respectively a desired offline computed homotopic trajectory

x̂(λ̄λλ ). The following part explains the synthesis of Kk for

the LTV-system (11) based on Lyapunov stability conditions

and a quadratic performance functional. (λ̄λλ is assumed to be

known here; its computation is covered later in Sec. V).

The closed-loop delta-system of (11) with δλλλ k+1 :=
λλλ k+1 − λ̄λλ and the control law (12) becomes:

δλλλ k+1 = (I −D−1
xk+1

BKk)δλλλ k. (13)

As performance measure for this system, consider the

quadratic cost function with symmetric and positive-definite

weighting matrices QC and RC:

J(δλλλ k,δuk) =
N−1

∑
k=0

δλλλ k
T

QCδλλλ k + δuk
T

RCδuk, (14)

or with insertion of (12) written as:

J(δλλλ k,Kk) =
N−1

∑
k=0

δλλλ k
T (QC +Kk

T RCKk)δλλλ k. (15)

With a matrix P = PT > 0 ∈ R
nc×nc , let a Lyapunov

function:

Vk = δλλλ
T
k Pδλλλ k, (16)

be given, with which the LTV-system (13) is stable, if the

following condition holds:

Vk+1 ≤Vk − δλλλ k
T (QC +Kk

T RCKk)δλλλ k. (17)

LEMMA IV.1 For the LTV-system (13) and a Lyapunov

function (16) with P = PT > 0, an upper bound of the finite

horizon costs (15) is given by:

J(P) = trace(P). (18)

Proof. The single-step decrease of the quadratic Lyapunov

function Vk = δλλλ k
T

Pδλλλ k is bounded by the step costs

1The cases of nc > nx, or nc < nx respectively, can be a suitable alternative
to enlarge or reduce the homotopy space, but is not considered here for
brevity.



formulated by (15) when time advances from k to k + 1.

Summing up the decrease over all time steps yields:

N−1

∑
k=0

Vk+1 −Vk ≤
N−1

∑
k=0

−δλλλ k
T (QC +Kk

T RCKk)δλλλ k, (19)

and thus:

V0 −VN ≥ J(δλλλ k,Kk). (20)

Since all x̂i for i∈M terminate in x f , the homotopy function

xN(λλλ N) also equals x f regardless of the value of λλλ N . Thus,

for all λλλ N , it follows that δλλλ N = 0 and VN = 0, such that:

V0 ≥ J(δλλλ k,Kk). (21)

The upper bound of V0 can be minimized independently of

δλλλ 0 by minimizing over the trace of matrix P, such that (18)

holds.

As argued in [2], LTV-systems can be interpreted as linear

parameter varying (LPV) systems with bounded uncertain-

ties, such that the controller synthesis described there can

be applied to LTV-systems. It is known for LPV-systems,

that bounded uncertainties of the system matrices can be

over-approximated by matrix polytopes. Stability for the

controlled LPV-system is then guaranteed for all variations

of the uncertain parameters, if the control law is stabilizing

for the vertices of the over-approximating matrix polytope.

For the system (13) considered here, the matrices Dxk
can be

interpreted as bounded uncertainties such that techniques for

LPV-systems become applicable. However, unlike the LPV

case, the matrices Dxk
are completely known at every time

step (due to the offline computation of the trajectories x̂i),

implying that a polytopic approximation of the matrices Dxk

over k is unnecessary. Instead, the stability condition (17) has

to be satisfied for Dxk
in any k. The optimization problem

can be written for k ∈ {0, ...,N − 2} as:

min
P, Kk

trace(P) (22)

s.t. (17), (16) with P ≥ 0. (23)

For k = N − 1, the optimization needs not to be solved,

since the offline computed input uN−1(λλλ N−1) fixes this input

already to the value required to bring the system into the final

state xN(λλλ N) = x f .

LEMMA IV.2 The non-convex constraint (17) can be trans-

formed into:

(I−D−1
xk+1

BKk)
T P(I −D−1

xk+1
BKk)−P+QC +Kk

T RCKk ≤ 0,
(24)

and holds with P = Y−1 and Kk = LkY
−1 if Y = Y T > 0 ∈

R
nc×nc and Lk ∈ R

nu×nc exist for all k = 0, ...,N − 2. Then,

also the following LMI holds:








Y (Y −D−1
xk+1

BLk)
T Y T Lk

T

Y −D−1
xk+1

BLk Y 0 0

Y 0 Q−1
C 0

Lk 0 0 R−1
C









> 0,

(25)

in which 0 denotes zero matrices of appropriate dimensions.

Proof. Equation (17) can be reformulated by inserting Vk =
δλλλ k

T
Pδλλλ k and likewise Vk+1 into (17), and then by replac-

ing δλλλ k+1 according to (13), to obtain (24). If the latter is

multiplied from the left and right by Y , and if the substitution

Y = P−1 is used, then a strict formulation of the inequality

(24) is obtained to:

(Y −D−1
xk+1

BKkY )
TY−1(Y −D−1

xk+1
BKkY )−Y

+Y T QCY +YT Kk
T RCKkY < 0.

(26)

Applying the Schur complement to (26) yields:









Y (Y −D−1
xk+1

BKkY )
T Y T KkY

T

Y −D−1
xk+1

BKkY Y 0 0

Y 0 Q−1
C 0

KkY 0 0 R−1
C









> 0,

(27)

for which the substitution Lk =KkY completes the proof.

The cost function (18) depends on P and the matrix

inequality (25) on Y . A closed upper bound P̃ on P can be

obtained from the non-strict inequality P̃ ≥ Y−1. Applying

the Schur complement, this inequality is equivalent to:
[

P̃ I

I Y

]

≥ 0. (28)

The overall optimization problem for the controller synthesis

of the LTV-system (13) can now be summarized to:

min
P̃, Y, Lk

trace(P̃) (29)

s.t.: (25), (28), P̃ ≥ 0, k ∈ {0, ...,N − 2}

The result of the optimization is a time-varying linear

quadratic regulator (LQR) for the LTV-system (13). The

offline controller synthesis can be carried out with solvers

like MOSEK.

V. ONLINE CONTROL STRATEGY

The online procedure, initiated upon detection of an ob-

stacle at time k∗, consists of two parts: the first is to map

the np vertices pl of a vertex representation Px,v := {pl ∈
R

nx | l ∈N≤ np}= {p1, ..., pnp} of the obstacle polytope Px

into the homotopy space. The result is denoted by P
λ̄λλ ,v. The

motivation for this mapping is to select a desired trajectory

λ̄λλ that is outside of the convex hull of P
λ̄λλ ,v, denoted by

P
λ̄λλ

:= conv(P
λ̄λλ ,v). The second part selects λ̄λλ by identifying

a trajectory which is free of collision when the system (13)

transitions from λλλ k∗ to λ̄λλ .

A. Transforming Px,v into the Homotopy Space

DEFINITION V.1 Let λ̄λλ (pl) ∈ R
nc denote the vector of

constant homotopy parameters which refers to the trajectory

x̂(λ̄λλ (pl)) that runs from the initial state x0 through the vertex

pl of Px,v to the final x f , while avoiding any intersection

with the interior of Px. The set of all vertices pl of Px,v

mapped into the homotopy space is denoted by P
λ̄λλ ,v. △



Generally, the mapping of a vertex from the state space

to the homotopy space is not unique. The reason is, that

a point pl in the state space can be mapped for different

times k. This can be seen from (3), if pl is used on

the left side, and the equation is solved for λλλ k(pl) for

different times k. The region in which the vertex pl can

be described by nc − 1 relevant trajectories is first selected,

and x̂(λ̄λλ(pl)) is then determined by (3) for the time k,

which is closest to pl . For illustration, Fig. 1 shows the

procedure in R
2 for three time steps of three trajectories

x̂0 = [x0
0,x

0
1,x

0
2], x̂1 = [x1

0,x
1
1,x

1
2], and x̂2 = [x2

0,x
2
1,x

2
2], and for

homotopy parameters λλλ k(pl) = [λ 1
k (pl),λ

2
k (pl)]

T . The vertex

pl can be described by a homotopy parameter vector at time

k = 2 resulting in values λλλ 2(pl) ≈ [0.6, 0]T or by a vector

of λλλ 3(pl) ≈ [0.7, 0.3]T . To avoid multiple mapping of pl

to λλλ k(pl), the parameter λ 2
k (pl) = 0 is set to zero for all

k, and λ 1
k (pl) is only determined for the k which is closest

to pl , i.e. for k = 2. The parameter vector thus becomes

λλλ 2(pl) = [λ 1
2 (pl),0]

T ≈ [0.6, 0]T . If instead the other case is

chosen with λ 1
k (pl) set to zero for all k, the mapping would

be impossible since λ 2
k (pl) /∈ [0,1] for any k. The following

definition describes the combinatorial possibilities of relevant

trajectories that span a region in which pl can be located.

DEFINITION V.2 Let a set of variables ci ∈ {0,1}, i ∈
{1, . . . ,nc} denote whether the i-th parameter in λ̄λλ (pl) is

selected (ci = 1) or not. These variables are arranged in

a diagonal matrix Cs = diag(c1, . . . ,cnc) to establish the

selection by:

λ̄λλ(pl ,Cs) :=Cs · λ̄λλ (pl). (30)

Let G denote the set of matrices Cs, s ∈ {1, . . . ,Np}, for

all possible combinations of chosen parameters for which

∑i ci = nc − 1. The cardinality of G is Np =

(

nc

nc − 1

)

. △

A vertex pl can be located in between the subspaces

reachable in two adjacent points of time, as illustrated in Fig.

2 for a case related to the one addressed in Fig. 1: Consider

the case that only the upper trajectory in Fig. 1 is selected by

the matrix C1 ∈ G . Thus, the optimal trajectory x̂0 and the

one base trajectory x̂1 remain relevant, and λ̄λλ (pl ,C1) has

only one valid entry. Fig. 2 shows that the trajectories have

a common initial state x0 = xs and final state xN = x f . Now to

determine the value of λ̄λλ (pl ,C1), the vertex pl ∈R
2 of Px,v

can be described in the space of two linearly independent

x1
3

x1
2

x1
1

pl

x2
1

x2
2

x2
3

x0
1 x0

2 x0
3

λ 1
k (pl)

λ 2
k (pl)

Fig. 1. Mapping of pl ∈ R
2 into the homotopy space: multiple mapping

is here avoided with λ 2
k = 0 for all k.

straight lines g0(τ) and g1(τ), colored orange in Fig. 2 with

continuous variable τ ∈ [0,1] as:

g0(τ) = x0
LB +(x0

UB − x0
LB)τ, (31)

g1(τ) = x1
LB +(x1

UB − x1
LB)τ. (32)

Equation (31) is a linear approximation of the trajectory x̂0

between the state x0
UB and x0

LB, where UB stands for an upper

time bound and LB for a lower bound. Eq. (32) linearly

approximates the base trajectory x̂1. A homotopy between

the two functions for a vertex pl (and, of course, for C1) is:

g(τ, λ̄λλ(pl ,C1)) = g0(τ)+ (g1(τ)− g0(τ))λ̄λλ (pl ,C1). (33)

Inserting (31) and (32) into (33) leads to:

g(τ, λ̄λλ(pl ,C1))− x0
LB = (x0

UB − x0
LB)τ +(x1

LB − x0
LB)λ̄λλ (pl ,C1)

+ [(x1
UB − x1

LB)− (x0
UB − x0

LB)]τ · λ̄λλ(pl ,C1). (34)

For given upper and lower bounds, (34) is a bilinear function

in the variables λ̄λλ (pl ,C1) and τ . An iterative procedure for

finding λ̄λλ (pl ,C1) in three steps is as follows:

Step (i): The bilinear equation (34) is conically approxi-

mated by setting x1
LB = x0

LB, leading to the red cone in Fig.

2, and to values of τ and λ̄λλ (pl ,C1).

Step (ii): The upper and lower bounds are tightened in

an iterative procedure until pl is located between the closest

upper and lower bound shown by the green cone. The factor

of tightening UB and LB in each iteration is given by τ ,

originating from step (i).

Step (iii): Since pl would be located in the green cone

by a wrong homotopy value of approximately λ̄λλ (pl ,C1)≈ 1,

a backtracking procedure is carried out, which reduces the

upper bound along a linear interpolation between x1
LB and

the green x1
UB, as well x0

LB and the green x0
UB, until pl is

located on the front side of the blue triangle. This leads

to the solution of the blue conic approximation, which is

equivalent to the bilinear equation (34), between the resulting

upper bounds UB (green) and LB (black).

Based on this procedure, the mapping results in the set:

P
λ̄λλ ,v = {λ̄λλ(pl ,Cs)|pl ∈ Px,v,Cs ∈ G : λ̄λλ (pl ,Cs)≥ [0]nc}

(35)

x̂1

x̂0

g1(τ)

g0(τ)

x1
UB

x0
UB

x1
UB

x0
UB

x1
UB

x0
UBx0

LB

x1
LB

pl

xs
x f

Step (iii)
Step (ii)

Step (i)

Fig. 2. Procedure for determining λ̄λλ (pl ,C1).



B. Online trajectory determination

The following procedure determines a vector of homotopy

parameters which ensures that the interior of the detected

obstacle is not crossed. The control laws determined offline

in Sec. IV-B are then used to control the states to the

corresponding homotopic trajectory.

When the obstacle is detected at time k∗, λ̄λλ has to be

chosen such that the offline computed controllers Kk∗+ j,

j ∈ J , drive the system from xk∗ to x f , or respectively

from λλλ k∗ to λ̄λλ := λ̄λλ (pl ,Cs) ∈P
λ̄λλ ,v. This should be achieved

such that the state trajectory passes the obstacle at the vertex

pl , which incurs the lowest costs J(λ̄λλ ). To formulate the

costs depending on the homotopy parameter, i.e. as J(λ̄λλ), the

values xk∗+ j and uk∗+ j in (4) are replaced by xk∗+ j(λλλ k∗+ j)
and ũk∗+ j(λλλ k∗+ j) according to (3) and (6). With (12) and

(13), the transformed costs result to:

J(λ̄λλ) =
N−1−k∗

∑
j=0

(xk∗+ j − x f )
T Q(xk∗+ j − x f )

+ (uk∗+ j − u f )
T R(uk∗+ j − u f ) (36)

s.t. xk∗+ j(λλλ k∗+ j) = x0
k∗+ j +Dxk∗+ j

λλλ k∗+ j (37)

ũk∗+ j(λλλ k∗+ j) = uk∗+ j(λλλ k∗+ j)+ δuk∗+ j (38)

δuk∗+ j =−Kk∗+ j(λλλ k∗+ j − λ̄λλ) (39)

δλλλ k∗+1+ j = (I −D−1
xk∗+1+ j

BKk∗+ j)δλλλ k∗+ j (40)

j ∈ J . (41)

DEFINITION V.3 Let ΛΛΛ denote the set P
λ̄λλ ,v ordered with

increasing cost J(λ̄λλ ). An element of ΛΛΛ is referred to by Λ(i),
and Λ(1) has lowest costs. △

The procedure is shown in Algorithm 1: Starting from the

optimal trajectory with λλλ k∗ = [0]nc at time k∗, the optimal

trajectory is checked against collisions with Px (line 4). If

this trajectory collides with the obstacle, the vertices pl of

Px,v are mapped into the homotopy space, leading to the

set P
λ̄λλ ,v (line 5), which is then sorted according to its costs

in order to obtain ΛΛΛ (line 6). Starting with the trajectory

with Λ(1) (and then continuing in the order of increasing

costs), the trajectory is computed using (3) and (13), see

(line 8-10). It is then checked against collisions with Px (line

11). Finally, the algorithm terminates directly if the trajectory

with desired homotopy value Λ(i) is feasible. If this is not

the case, i is incremented and a new trajectory passing the

obstacle along another vertex (and with higher costs) is

computed and checked against collision. The algorithm has

to be repeated in the worst case for |ΛΛΛ| times. If no solution

can be found, no possible trajectory avoids collision , and

the algorithm terminates and the system has to be stopped

by an emergency routine.

VI. NUMERICAL EXAMPLE

In order to illustrate the proposed procedure, the point-
to-point control of a generic system with nx = 3 and nu =
3 is considered. The matrices of the stable, fully reachable

Algorithm 1 Online control procedure

1: Set: k := k∗

2: Given: x0
k , λλλ k = [0]nc , λ̄λλ = [0]nc , Px, Px,v,

3: j ∈ J = {0, ...,N − 1− k}
4: if ∃ j ∈ J : xk+ j(λλλ k+ j) ∈ Px then

5: • Compute the set of vertices P
λ̄λλ ,v

6: • Compute the set ΛΛΛ ordered according to J(λ̄λλ)
7: for i ∈ {1, ..., |ΛΛΛ|} do

8: • Compute for all j ∈ J the states

9: xk+ j(λλλ k+ j) according to (3) and (13)

10: with homotopy value λ̄λλ := Λ(i).
11: if ∃ j ∈ J : xk+ j(λλλ k+ j) ∈ Px then

12: • ∀ j ∈ J : xh
k+ j is not feasible

13: else

14: • ∀ j ∈ J : xk+ j(λλλ k+ j) is an optimized

15: and feasible trajectory with λ̄λλ = Λ(i).
16: break

17: end if

18: end for

19: end if

discrete-time system are given by:

A = 1e−3 ·





953 24 12
24 911 9.4
12 9.4 965



 , B = 1e−4 ·





967 −7 40
−7 1026 −46
40 −46 1057



 ,

(42)

The weighting matrices Q of (4) is chosen as identity matrix,

and R as 10 ·Q.

The weighting matrices for the controller design are QC =
50 ·Q, RC = R, chosen to design the controller for reaching

the desired state trajectory quickly. The time horizon is

selected to N = 60, the initialization to x0 = xs = [0,0,0]T ,

and the final state and input at the end time k = 60 are

xN = x f = [5,5,5]T , uN = u f = [0.5,2.7,0.7]T . With nc = 3,

the set of offline computed trajectories is chosen to: X =
{(x̂0, û0),(x̂1, û1),(x̂2, û2),(x̂3, û3)}, see Fig. 3. The optimal

trajectory is (x̂0,û0), and is determined by solving (5) without

the collision avoidance constraint. In Fig. 3, this trajectory is

colored magenta. The other nc base trajectories (black) of X
are specified to obtain the shown area for obstacle avoidance.

The polytopic obstacle Px ⊂R
3 is chosen as visible in Fig.

3; obviously x̂0 intersects with Px, while this is not true for

the three base trajectories.

The considered scenario is to drive the system from

the initial state x0 to the final xN = x f , while avoiding

the polytopic obstacle which appears at k∗ = 10, and then

remains static until the end time.

The homotopy-based approach is compared to a mixed-

integer quadratic programming (MIQP) approach for the

remaining time horizon of 50 steps to guarantee feasibility of

the executed trajectory. In the MIQP approach, the forbidden

region Px is described by binary variables using the well-

known Big-M-formulation to handle the non-convexity. As

can be seen in Fig. 3, the system moves along the optimal

trajectory (magenta) for both methods up to k∗ = 10 (green),



when the obstacle is detected. The trajectory determined by

the homotopy approach (blue) passes the obstacle along its

lower right vertex, while the trajectory obtained by the MIQP

method (red) passes the obstacle along its lower right edge

to minimize the cost.

While the costs for the red trajectory is lower compared

to the blue one, a significant advantage of the homotopy-

based method compared to the MIQP optimization can be

observed with respect to computation time: The homotopy

approach determines a feasible and optimized solution in

totally 3.2 milliseconds (ms) using a Matlab implementation

on a standard PC. For the MIQP-based approach, a Matlab

implementation with embedded solution of the optimization

problems by the CPLEX-tool used on the same PC solves

the problem in approximately 2.5 seconds (s). The high

computation time of the MIQP approach results from the fact

that for all time steps starting from k∗ (i.e. for 50 steps) the

collision avoidance constraints have to be formulated using

binary variables, leading also to a large number of algebraic

constraints involving these variables. Comparing both meth-

ods with the formulation of problem (5) as a nonlinear, non-

convex program leads to even higher computation times of 5

s (using the Matlab solver fmincon, and by approximating the

obstacle by an ellipsoidal region which must not be entered).

VII. CONCLUSIONS

The paper has shown that the problem of online compu-

tation of optimized trajectories satisfying non-convex state

constraints (in the sense of obstacle avoidance) can be solved

by employing homotopy properties. The key idea is to

combine the offline computation of feedback control laws

by semi-definite programming with the online determination

of suitable reference values for these controllers (in terms of

desired homotopy parameters) to circumvent the obstacle.

x1
x2

x3

Fig. 3. Simulated state trajectories with optimal trajectory x̂0 (magenta),
base trajectories x̂1 , x̂2 , x̂3 (black), a part of the optimal trajectory (green)

up to k∗ = 10, the trajectory obtained by the homotopy approach x̂(λ̄λλ) (
blue), and the solution by MIQP (red). The polytope Px is the green area.

The proposed method computes an approximation of the

optimal solution significantly faster compared to methods

like MIQP or NLP (as would be used in MPC). For the

homotopy approach, the computation times were found to

be 3 orders of magnitude smaller, allowing the application

to systems with considerably faster dynamics.

Future work will extend the method by passing obstacles

not only around its vertices, but across edges. Furthermore,

the extension to obstacles moving after detection, and time-

varying final states will be considered.

REFERENCES

[1] L. Blackmore and B. Williams. Optimal manipulator path planning
with obstacles using disjunctive programming. In American Control

Conference, pages 3200–3202, 2006.
[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. SIAM, 1994.
[3] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and

F. Allgöwer. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations. J.
of Process Control, 12(4):577 – 585, 2002.

[4] H. Ding, G. Reissig, and O. Stursberg. Increasing Efficiency of
Optimization-based Path Planning for Robotic Manipulators. In 50th

IEEE Conf. on Decision and Control, pages 1399–1404, 2011.
[5] D. Ferguson and A. Stentz. Anytime, dynamic planning in high-

dimensional search space. In IEEE Conf. on Robotics and Automation,
pages 1310–1315, 2007.

[6] R. Gondhalekar and J. Imura. Least-restrictive move-blocking model
predictive control. Automatica, 46(7):1234 – 1240, 2010.

[7] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. J. of Robotics Research, 30(7):846–894,
2011.

[8] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. J. of Robotics Research, 5:90–98, 1986.

[9] C. Kirches, L. Wirsching, H.G. Bock, and J.P. Schlöder. Efficient
direct multiple shooting for nonlinear model predictive control on long
horizons. J. of Process Control, 22(3):540 – 550, 2012.

[10] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE Conf. on Robotics and

Automation, pages 995–1001, 2000.
[11] S. Liao. Notes on the homotopy analysis method: Some definitions

and theorems. Comm. in Nonlinear Science and Numerical Simulation,
14(4):983 – 997, 2009.

[12] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36(6):789 – 814, 2000.

[13] W.S. Newman and M.S. Branicky. Real-time configuration space
transforms for obstacle avoidance. J. of Robotics Research, 6:650–
667, 1991.

[14] K. Reif, K. Weinzierl, A. Zell, and R. Unbehauen. A homotopy
approach for nonlinear control synthesis. IEEE Tr. on Automatic

Control, 43(9):1311–1318, 1998.
[15] A. Richards. Fast model predictive control with soft constraints. In

European Control Conference, pages 1–6, 2013.
[16] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for

multi-parametric quadratic programming and explicit MPC solutions.
Automatica, 39(3):489 – 497, 2003.

[17] Y. Wang and S. Boyd. Fast model predictive control using online
optimization. IEEE Tr. on Control Systems Technology, 18(2):267–
278, 2010.

[18] M.N. Zeilinger, C.N. Jones, and M. Morari. Real-time suboptimal
model predictive control using a combination of explicit MPC and
online optimization. IEEE Tr. on Automatic Control, 56(7):1524–1534,
2011.


