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1. Many CPS systems are very large-scale and distributed with many

components

2. Review from last year: stability of symmetric systems with some

improvements: (To appear in Automatica [4])

3. Main work this year: extension to approximately symmetric systems. Main

delineations: autonomouse (i.e., modeling errors) stable to points vs sets

and nonautonomous boundedness to points vs sets.

(a) Stability to sets: (To appear, MED’13 [13])

(b) Nonautonomous boundedness about zero: (Submitted to CDC [2])

(c) Stability to sets with bound on steady-state solution: (Submitted to

IROS [3])

(d) Nonautonomous boundedness about set: in progress (ICRA 2013?).
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• Overall goal: results for system integration through compositionality.

• Compositionality: system-level properties can be computed from local

properties of components

◦ System-level properties preserved when expanding system.

• Initial focus: invariant properties for symmetric systems.

• Emphasis on general results, not limited to specific system dynamics.

• Initial results: symmetric systems and stability.

• These results are Lyapunov-based, so the natural extension is to passivity.

• Also working toward use of approximate symmetries.

• Prior and related work: [5, 8, 6, 7, 10, 9, 1, 12]
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Consider a basic building block element :

x

u

w+

w−

v+

v−

where

• x is the state vector;

• u is the vector of control inputs;

• w± are the outputs; and,

• v± are the coupling inputs.

Connecting the inputs to the outputs gives

xx x x x x

uu u u u u

w+w+w+w+w+w+

w−w− w− w− w− w−

v+v+ v+ v+ v+ v+

v−v−v−v−v−v−
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Systems can be built with various topologies:
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Group Theory Allows for Generalization to Complicated Inter-
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• Represent connectedness with

generators, {s1, . . . , sn} with

g2 = sig1.

• Cayley Graph:

◦ nodes = components

◦ edges = communication

• Equivalent connections for two

systems if they have the same

generators.

• Example: S = {−2,−1, 1, 2}.

• Each component:

ẋi = fi(x) + gi(x)u

ws
i (t) = ws

i (xi(t)).
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• Periodic interconnections:

vsg (t) = ws
s−1g

(

xs−1g(t)
)

ws
g (t) = vssg (xg(t))



A Symmetric System = Periodic Interconnections + Identical
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A symmetric system has components with identical dynamics:

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x), w
s
s−1g1

(x) = ws
s−1g2

(x) and identical

control laws

ug1,j

(

x1(t), w
s1

s−1

1
g1
(x2(t)), . . . , w

s|X|

s−1

|X|
g1
(x|X|+1(t))

)

=

ug2,j

(

x1(t), w
s1

s−1

1
g2
(x2(t)), . . . , w

s|X|

s−1

|X|
g2
(x|X|+1(t))

)

for all g1 ∈ G1, g2 ∈ G2, s ∈ X , x ∈ R
n,

(

x1, x2, . . . , x|X|+1

)

∈ R
n × R

n × · · · × R
n and j ∈ {1, . . . ,m} where

m = mg1 = mg2 .
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What properties are invariant throughout the entire equivalence class?



Conditions on V Provide Stability for Entire Equivalence

Class
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• Stability: if a symmetric distributed system is stable, so is any equivalent

symmetric system, so can “grow” or “shrink.”

◦ Growing: useful for analysis/design on a small system with guaranteed

invariance for larger equivalent systems

◦ Shrinking: reconfigurable robustness

• Robustness: stability in the sense of Lyapunov is guaranteed even when

components fail without any reconfiguration necessary.

• Requires a symmetric Lyapunov function: V =
∑

i∈G Vi where

Vg1

(

x1, w
s1

s−1

1
g1
(x2), . . . , w

s|X|

s−1

|X|
g1
(x|X|+1)

)

=

Vg2

(

x1, w
s1

s−1

1
g2
(x2), . . . , w

s|X|

s−1

|X|
g2
(x|X|+1)

)

for all g1, g2 ∈ G and
(

x1, x2, . . . , x|X|+1

)

∈ R
n × · · · × R

n.
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• From [11] second-order mechanical system agents:

d

dt









xi
ẋi
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ẏi
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


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
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


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







0
0
0
1









ui,2. (1)

• Goal= regular (N + 1)-polygon centered at the origin, hence

dij =







1, |i− j| = 1
sin( 2π

N+1)
sin( π

N+1)
, |i− j| = 2

and ri =
1

2 sin π
N

.

• Take the control law to be u =

−
∑

j









(√
(xi−xj)2+(yi−yj)2−dij

)

√
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)

√
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Figure 1. Five robot stable formation control.
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Figure 2. Initial and final configurations.
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Figure 3. Seventeen-agent formation control.
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Figure 5. Robust formation stability with agent failure.
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Figure 6. Robust formation stability with agent failure: initial and

final configuration.
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Figure 7. Lyapunov functions for each individual robot a five-

vehicle system. Individual robots are not stable!
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• Consider approximately symmetric system of the form

ẋg(t) = fg (xg(t)) +

mg
∑

j=1

gg,j (xg(t))ug,j (xg(t), xXg(t))

+ f̂g (xg(t)) +
m
∑

j=1

ĝg,j (xg(t))ug,j (xg(t), xXg(t))

ws
g(t) = ws

g (xg(t))

• Idea: V̇ for the symmetric part is more negative than any possible

contribution from f̂(x) + ĝ(x)u.
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PROPOSITION: If

• d (x, dV0) represents the distance from a point x to the set of points where

V̇ for the symmetric system equals zero and

•

∂VG

∂xg
(xG)



fg(xg) +

m
∑

j=1

gg,j(xg)ug,j (xg, xXg)



 ≤ c1d
2 (x, dV0)

∥

∥

∥

∥

∂V

∂xG

∥

∥

∥

∥

≤ c2d (x, dV0) ,

∥

∥

∥f̂ (xg) + ĝ (xg)u (xg, xXg)
∥

∥

∥ ≤ c3d (x, dV0)

• Then if c2c3/c1 < 1 any solution starting in ΩG approaches the largest

invariant set in the set of points where V̇g = 0 as t → ∞.

• Applies to entire equivalence class.
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Figure 8. Trajectories for distributed control for an approximately

symmetric five-vehicle system.
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Figure 8. Final formation for distributed control for an approxi-

mately symmetric five-vehicle system.
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Figure 8. Trajectories for distributed control for an approximately

symmetric nine-vehicle system.
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Figure 8. Final formation for distributed control for an approxi-

mately symmetric nine-vehicle system.
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• The previous result was when stability of the symmetric part was “stronger”

than the symmetry-breaking, so all solutions still converged to the

equilibrium.

• Now we consider cases when that is not true, but we know a bound on the

symmetry-breaking.

• This leads to a bound on the steady-state solutions from the equilibrium.

• Example (consensus-type problem):

◦ Symmetric system:

ẋ = k
∑

j∈N

(xj − xi)
3

◦ Break symmetry but keep symmetric “kernel”

ẋ = k
∑

j∈N

(xj − xi)
3 + k tan−1 (x2) .
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PROPOSITION: Given an approximately symmetric system assume the

corresponding symmetric system satisfies the hypotheses of the symmetric

system stability theorem and that

‖pG(xG)‖ < δ.

Then for any initial condition satisfying ‖xG (t0)‖ < δ, the solutions of the

approximately symmetric system satisfy

‖xG(t)‖ < δ (2)

for all t ≥ t0. Furthermore, solutions to any equivalent approximately

symmetric system also satisfies Equation 2.
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Figure 9. Asymptotic stability for corresponding symmetric five-

agent system.
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Figure 9. Stability bound for approximately symmetric five-agent

system.
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Figure 9. Norm of solution for approximately symmetric five-agent

system.
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Fifteen agent system (perturb 1, 2 and 4):
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Figure 10. Solution for approximately symmetric fifteen-agent sys-

tem.
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Figure 10. Norm of solution for approximately symmetric fifteen-

agent system.
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• In contrast to previous results, this focuses on non-symmetric inputs.

• We consider systems of the form

ẋg(t) = fg (xg(t))

+

mg
∑

j=1

gg,j (xg(t))ug,j

(

xg(t), v
s1
g (t), , . . . , v

s|X|
g (t)

)

+

mg
∑

j=1

gg,j (xg(t)) ûg,j(t)

ws
g(t) = ws

g (xg(t)) ,

• Consider the same example as before, but with input term

ẋ = k
∑

j∈N

(xj − xi)
3 + ki sinωit
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PROPOSITION: Given

• a symmetric system

•
∥

∥

∥

∑mg

j=1 gg,j (xg(t)) ûg,j(t)
∥

∥

∥
< c for all g ∈ Ĝ, and,

• for any one of the g ∈ G,

∂VG

∂xg
(x)



fg(xg) +
m
∑

j=1

gg,j(xg)ug,j (xg, xXg)





≤ −W4(x)− c

∥

∥

∥

∥

∂Vg

∂xg
(x)

∥

∥

∥

∥

for all xG ∈ {DG| ‖xG‖ > µG‖ where W4(x) is a positive definite

function.

• Then the solutions are bounded and ultimately bounded with computable

bounds.
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Figure 11. Bounded solutions for five agent system.
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Figure 11. Early solution for bounded five agent system.
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Figure 11. Bounded solutions for thirteen agent system.
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• This year’s work focused on extending the symmetry results from last year

to approximately symmetric systems.

• This is very useful for realistic systems.

• Extensions in four directions:

◦ Approximately symmetric autonomous systems (modeling errors):

• maintaining stability of equilibrium

• computing bounds on solutions.

◦ Systems with persistent non-symmetric inputs:

• boundedness of solutions about equilibrium

• (in progress) boundedness of solutions about sets.

• Current efforts

◦ connections to passivity and dissipativity

◦ connections to applications (ACC, power grid)
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