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CPS GoAL: Advance CPS by more explicitly tying sensing,
perception, and computing to the optimization and control of
physical systems with variable and uncertain properties.

Task2: Derive dynamics and gait controller,

X = f(X(t), u(t)) + Gext (X(t)) Fext

for multiple terrain types and for gait transitions.

RESEARCH GOAL: Improve the perception and control of legged
locomotion over granular media for the express purpose of
achieving robust, adaptive, terrain-aware legged locomotion.

Phase 1

Measure/model

OBJECTIVES:

* Validated co-simulation platform for legged robot movement
over granular media;

" Terrain-dependent, stabile gait generation and gait transition
strategies via optimal control;

= Online, compute-constrained learning of granular interactions
for adaptation and terrain classifications; and

= Validated contributions using experimental,
testbeds

= Communicate value of STEM education.

Task 3: Learn terrain models (F,,¢)
online. Classify terrain based on
experienced models.

Task 1: Experimentally derive granular
force laws for modeling F,,; through

granular-media controlled experiments

Task 4: Integrate and validate research contributions.

Modeling Hopping over Granular Media Optimal Control of Hopping Height over Granular Media
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MOTIVATION/ISSUES: motor: 7 Jumping task definition _
= Unlike solid ground, granular ground substrates

do not provide a hard constraint. g |
= Reaction forces have variable properties. thrust rod: m, i

" Yielding ground reduces control effectiveness.
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= Optimal control formulation created with terrain
interaction model.
= Objective: Meet target hopping height while
minimizing control effort. i
= Optimal control outcomes matched between
experiment and simulation. 0
= Able to meet same hopping height with terrain as
with hard ground, when model included.
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* Controlled experiments identify terrain interaction models é ; 1
= Simulation created to replicate actual behavior
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= Repeat optimal control experiment with no 3 \ 7%.12 = Verifying outcome of overall process on actual

knowledge of terrain force model. | hopper.
=  Assume hard ground, then let measured outcomes E \ = Extend current results to planar, bipedal walking.

inform revised model. g 20 \Tr?an = Develop force defect equations for bipedal system.
= Defect-based system of equations plus measured "§ \ = Achieve alignment between simulation and

dynamics provide data to Guassian process model. ol experiment for planar bipedal system.
= Quickly learn terrain force model in simulations.
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