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Opportunities and challenges
1. Geographically distributed data centers can provide DR services

by real-time load balancing across these data centers
2. Power flow constraints on the distribution grid constrain optimal

DR decisions and introduce computational challenges 

.

Data Center DR with Power Network Constraints 
(Low)

Internet-scale system 

+  Minimize network delay 
+  Increase reliability 
−   BUT routing is challenging 
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� Load balancing 
� Network latency 
� Energy prices 

All are time varying 
Energy prices are also location dependent 

Energy-Aware Routing (EAR) 

tradeoff 

Proxy/Mapping node 

data center 

Optimal power flow (OPF) 

min
V∈Cn

   tr CVV H( )
s. t.     sj =  tr Yj

HVV H( )
          v j ≤  Vj

2
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min consumption cost 

power flow equations 

operational constraints 

nonconvex feasible set 

•          not Hermitian (nor positive semidefinite) 

•         is positive semidefinite (and Hermitian) 
 

nonconvex QCQP 
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Multiple solutions
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[Ian Hiskens] 

Problem formulation (optimal power flow)

Solution approach

Equivalent relaxations 

W+ WG
+

V W WG

For radial networks: always solve SOCP ! 

Theorem 
!  Radial G: SOCP is equivalent to SDP (          ) 
!  Mesh G: SOCP is strictly coarser than SDP 

V⊆W+ ≅WG
+

Semidefinite relaxation

. . .   

Overview	of	project	objec2ves	
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i.e., EV i cannot be charged before it arrives and at or after its
deadline. It can be charged at any rate not exceeding its peak
rate ri(t) > 0 during the period t 2 {ai, ai + 1, . . . , di � 1}
with the goal of satisfying its energy demand ei before
its deadline di. In its simplest form the power network
is abstracted as a single power limit P (t) > 0 with the
interpretation that the total charging rate at any time does
not exceed P (t). A problem instance P := (ei, ai, di, ri, i =
1, . . . , N ; P (t), t = 1, . . . , T � 1) is a collection of EVs and
a power limit. A control r := (ri(t), t = 1, . . . , T � 1, i =
1, . . . , N) is a nonnegative vector of charging rates with
ri(t) := 0 for t < ai or t � di.

Consider the optimal charging problem:

OPT: min

r�0
C(r) (1a)

subject to ri(t)  ri(t) 8i, 8t (1b)X

t

ri(t) � = ei 8i (1c)

X

i

ri(t)  P (t) 8t (1d)

where C(r) is a cost function and � is the duration of each
time interval. Constraints (1b) say that EVs i can only charge
(but not discharge to the grid) and their charging rates are
upper bounded by ri at all times. Constraints (1c) say that
the energy demands ei of all EVs i are met before their
deadlines. Constraints (1d) say that the station power limit
P (t) is respected at all times.

The cost function C(r) can represent electricity cost or rev-
enue to the garage, or maximum charging delay (makespan),
or asset utilization, or system robustness, etc. For instance to
minimize cost when electricity prices change over time, e.g.,
in time-of-day pricing, let c := (c(t), t = 1, . . . , T � 1) be the
price at time t. Then the cost function can be:

C(r) :=

T�1X

t=1

c(t)
X

i

ri(t)

Another approach is to (i) encourage charging EVs as fast
as possible, and (ii) giving priority to EVs that have smaller
flexibility. The first feature can be implemented by using an
cost that is increasing in time, for each EV. For example,

C(r) :=

X

i

X

t

(t� ai) ci ri(t)

where ci are constants that measure EV i’s flexibility. The
costs (t � ai)ci for EV i increases linearly in t, encouraging
charging at higher rates at small t � ai. A choice of ci is i’s
lack of laxity on arrival defined as (assuming ri are constant
over {ai, . . . , di � 1}):

ci :=

ei
(di � ai)ri

We assume the laxity ci lies in (0, 1]. If ci = 1 then EV i’s
demand can be satisfied only if it is charged at its peak rate
ri at all t = ai, . . . , di � 1. If ci > 1 then it is infeasible
to satisfy EV i’s energy demand by its deadline. If ci > cj
then it is more important to minimize

P
t(t � aj)rj(t) than

P
t(t� ai)ri(t) and therefore the algorithm tends to allocate

higher charging rates rj(t) to EV j at smaller t.
A problem instance P is feasible if there exists a charging

rate vector r that satisfies (1b)–(1d). In that case, an offline op-
timal r⇤ exists that minimizers (1). Such a control however is
generally not implementable (non-causal) because its solution
requires information on all future EV arrivals. OPT serves as
a lower bound on the cost achievable by any online (causal)
charging algorithms.

B. Online linear program
When C(r) is a linear function, our optimization prob-

lem is a linear program. At any time t, let V (t) :=

(ei(t), di, ri(t), i = 1, . . . , N(t)) denote the set of EVs
currently in the charging infrastructure and let P (t) be the
power limit. Here di is i’s departure time and ei(t) is its
remaining energy demand at time t. Let rt := (ri(⌧), ⌧ =

t, . . . , di�1, i = 1, . . . , N(t)) denote the charging rate vector
from t onward. Consider the online optimal charging problem
at each time t:

OLP(t): min

rt�0
C(rt) (2a)

s. t. ri(⌧)  ri(⌧), 8i, 8⌧ � t (2b)
T�1X

⌧=t

ri(⌧) � = ei(t), 8i (2c)

X

i

ri(⌧)  P (⌧), 8⌧ � t (2d)

At any time t, the optimization module constructs the online
linear program OLP(t) (2) and solves for the optimal charging
rate vector rt⇤ := (r⇤i (t), . . . , r

⇤
i (T � 1), i = 1, . . . , N(t)). It

then charges EV i at rate r⇤i (t). At time t+1, with a possibly
different set of EVs due to new arrivals and departures, it
constructs a new OLP(t+1) with remaining energy demands,
and the cycle repeats.

In fact, it is not necessary to solve an online LP at every
time t because the latest LP provides the “optimal” charging
rates not only at ⌧ = t, but all subsequent periods ⌧ > t until
new EVs arrive. Therefore it suffices to solve an LP only when
EVs arrive and use its solution between EV arrivals.

If at any time t, the online LP (2) is infeasible, then it is
not possible to satisfy all remaining energy for all EVs before
their deadlines. In that case the EVs will be charged according
to Least-Laxity First: EVs with smaller laxities at that time are
charged at their peak rates until the power distribution capacity
P (t) is reached.

C. Online LP vs offline LP
Figure 4 shows the simulation of Online LP (OLP) and

Least-Laxity First (LLF) in comparison with the offline LP
for OPT. The EV data that we used are based on the 2010–
2012 dataset from [19] that provides us with about 4,000
problem instances. The number of these problem instances
that are feasible under OLP and LLF, normalized by the
number of feasible instances under offline LP (theoretical
max), are shown in Figure 4(a), as the problem flexibility
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Distributed optimization

Delay–Power Tradeoffs in Data Centers (Srikant-Ying)

Heavy-traffic analysis
• System load approaches capacity limit
• Simplifications arise

Capacity region

load

• Data centers need to deliver service quality guarantees on delays to end users
• Delay performance is a function of the utilization of a data center, which greatly affects the 

power consumption
• Delay analysis facilitates the planning of power generation based on the delay demand

switches

links

data

… ……

…

servers

-------- file 
transfer

Data Center Network

Load-balancing

Delay Analysis Approaches
• Exact analysis of delay is usually intractable

Mean-field analysis

• Large number of servers in a system

Stochastic
System

Deterministic
Dynamical System

Concerns
• Data locality
• Precedence relation among tasks
• Delay analysis on job level

… ……

jobs

servers

tasks tasks

?

Bandwidth Allocation Policy
• The delay of data transfers is determined 

by the bandwidths allocated to them


