CPS:Medium:Safe Learning-Enabled Cyberphysical Systems, CNS-2038493

Co-Pls: M. Sznaier and O. Camps, Robust Systems Lab Northeastern University

Northeastern

Motivation

Design autonomous CPS capable of safely operating in and adapting to previously unseen scenarios. (Humans can do it!)

Joint learning of features and manifolds

- Goal: learn parsimonious dynamical representations.
- Main idea: search for manifold where the dynamics are linear (Koopman operators).
- Technical details:
 - Search for latent variables with low rank Gramian:

$$\mathbf{G} = \begin{bmatrix} \mathbf{y}_i^T \mathbf{y}_i & \mathbf{y}_i^T \mathbf{y}_{i+1} & \cdots & \mathbf{y}_i^T \mathbf{y}_{i+j} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{y}_{i+j}^T \mathbf{y}_i & \mathbf{y}_{i+J}^T \mathbf{y}_{i+1} & \cdots & \mathbf{y}_{i+j}^T \mathbf{y}_{i+j} \end{bmatrix}$$

- Find the mapping $\mathbf{x} \iff \mathbf{y}$ using Loewner interpolation theory
- Problem reduces to 2 convex SDPs

Application

• Public space monitoring to detect unsafe situations.

2021 NSF Cyber-Physical Systems Principal Investigators' Meeting June 2-4. 2021

Challenges

- Lack of training data (often single execution).
- Need to act while learning (no re-do!).
- sets.

- Goal: compare and classify time series.
- Main idea: compare the underlying dynamics.
- Technical details:

Scientific Impact

- Rapprochement of Systems Theory, ML, Viability.
- Efficient extraction of actionable information from large data sets.
- Frugal, explainable architectures for dynamics oriented learning.

Broader Impact and Outreach

- Certified safe learning enabled systems that can operate in close proximity to humans.
- Applications: health care, infrastructure monitoring, public space monitoring.
- Outreach through Northeastern's UPLIFT program.

