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Motivations and Challenges \ Objectives \

Cooperative
Control and
Sensing

Complex and strongly coupled sensing-motion
dynamics of swarming CPS

Inherent environmental uncertainties such as
communication delay and package loss,
unpredictable and/or confined spaces, and

The overall research objective 1s to establish and demonstrate a generic motion-sensing co-
design procedure that

significantly reduces the complexity of mission design for swarming CPS

oreatly facilitates the development of effective and efficient control and sensing

hiohl - q 1 , strategies, which are computation efficient, communication light, and adaptive to Underwater
. . . . ommunicatio 4 _ material
1ghly spatially and temporally varying various environment uncertainties n and Ac?ueaté‘d

environments

Resource constraints of mobile computing
entities such as limited computational power,
communication capability, and sensing ability

Localization /

Cooperative Motion and Sensing Co-design
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MI Underwater Communications & Localization | Seeking in Spatially Distributed Fields Collision Avoidance

Collision avoidance 1s an important requirement in vehicle swarms.
We employ the collision cone approach to determine analytical guidance
laws for collision avoidance

Magnetic Induction (MI) communication 1s realized by a time varying magnetic
field through 3D coil antenna.

Many environmental processes are spatial-temporal varying that can
be described by partial differential equations (PDEs)
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Each robot 1in the swarm 1s equipped with an MI oeion ”“;' a Source seeking 1s one of the fundamental and representative missions . .
: M Col:; ) ﬂ+r ) . . . . C L. These analytical guidance laws lead to ,
transceiver: U for swarming CPS with a wide range of practical applications . . . :
. — — : : : : : : computational savings on resource-constrained
To enable low-delay communication among robots for A cooperative filtering scheme 1s developed to achieve online robotic blatforms -
real time control N — parameter 1dentification and source seeking of the spatial-temporal p- : : -

M Coil: |- \ ”

These guidance laws are determined for objects
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