Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber Physical Systems WICHITA STATE UNIVERSITY

Wencen Wu*, Pu Wang**, Zheng Chen**, Animesh Chakravarthy**, Zhi Sun*** * Rensselaer Polytechnic Institute, ** Wichita State University, ***State University of New York at Buffalo

Motivations and Challenges

- Complex and strongly coupled sensing-motion dynamics of swarming CPS Inherent environmental uncertainties such as
- communication delay and package loss, unpredictable and/or confined spaces, and highly spatially and temporally varying

Objectives

- The overall research objective is to establish and demonstrate a generic motion-sensing codesign procedure that
- significantly reduces the complexity of mission design for swarming CPS
- greatly facilitates the development of effective and efficient control and sensing strategies, which are computation efficient, communication light, and adaptive to various environment uncertainties

- environments
- Resource constraints of mobile computing entities such as limited computational power, communication capability, and sensing ability

MI Underwater Communications & Localization

- Magnetic Induction (MI) communication is realized by a time varying magnetic field through 3D coil antenna.
- Each robot in the swarm is equipped with an MI Directional MI Coil: transceiver:
- To enable low-delay communication among robots for real time control
- To provide accurate position information of each robot The new contribution of this project:
- Comprehensive understanding of MI underwater channel characteristics
- Design and implementation of MI underwater transceivers using 3D coil antennas
- Design and implementation of MI underwater localization system

MI Transceiver with 3D Coil Antenna We can quantitatively and analytically characterize the underwater magnetic field propagation:

Cooperative Parameter Identification and Source Seeking in Spatially Distributed Fields

Many environmental processes are spatial-temporal varying that can be described by partial differential equations (PDEs) Source seeking is one of the fundamental and representative missions for swarming CPS with a wide range of practical applications A cooperative filtering scheme is developed to achieve online parameter identification and source seeking of the spatial-temporal varying field using a swarming CPS

- Source seeking algorithms are extended to take into account the obstacles and hazard zones in the field that the robots should avoid
- We build a controllable CO₂ diffusion field to allow the validation of the proposed algorithms under realistic uncertainties and disturbances $A CO_2$ static sensor network is constructed to calibrate the field

Collision Avoidance

- Collision avoidance is an important requirement in vehicle swarms. We employ the collision cone approach to determine analytical guidance
- laws for collision avoidance
- These analytical guidance laws lead to computational savings on resource-constrained robotic platforms
- These guidance laws are determined for objects of arbitrary shapes, and do not require the objects to be approximated by circles/polygons as
- is commonly done in the literature
- Two cases are considered for the collision avoidance acceleration magnitude (a_A) and direction (δ):
- a_A is of variable magnitude, and δ is such that a_A acts orthogonal to the velocity vector of the robot. • a_A is of constant magnitude, and δ is variable.
- Demonstration of cooperative collision avoidance laws with formation control in a dynamic environment with multiple robotic fish

Circular approximations for A and B lead to over conservative solutions

Collision Geometr

- At any point in the 3D underwater space
- Both the near and far fields of all feasible signal bands
- The impacts of lossy underwater medium on not only the propagation path but also the MI antenna itself are captured

MI field distribution in underwater Received signal strength over distance

MI Underwater Transceivers using 3D Coil Antennas

The arbitrarily orientated Tri-directional (TD) coil antenna that can eliminate the MI antenna's susceptibility to orientation changes • The three orthogonal coils at both transmitter & receiver form a 3 by 3 MIMO system • By using waterfilling algorithm, the 3D coil antenna can achieve much higher channel capacity and much reliable performance

Smart-material Actuated Biorobotic Fish

2D Maneuverable Robotic

To estimate the position of each robot in the swarm Also estimate the distribution of the high-conductive objects in underwater Additional inertial sensor to further improve the accuracy Experimental validation based on in-lab testbed

We developed a joint device localization and environment sensing algorithm

MI Underwater Localization

Water-tight Chambers for Sub-systems

