ALCH: An Imperative Language for the CRN-TAM

Robyn R. Lutz (Pl), Eric R. Henderson, James |. Lathrop, and Jack H.-kutz, lowa State University G

Overview

We introduce ALCH, an imperative language for describing programs in the CRN-
controlled tile assembly model (CRN-TAM), as well as an ALCH compiler and

simulator. ALCH supports many of the features of the C programming language and
contains a nondeterministic “branching” structure that allows us to query assemblies
as they are built.

We also present a strict construction of the discrete Sierpinski triangle (DST) in

the CRN-TAM. It has already been shown that the CRN-TAM is as powerful as
the Abstract Tile-Assembly (aTAM) and that it is impossible to strongly construct
the DS'T in the aT’AM; therefore our construction demonstrates that the CRN-TAM
is strictly more powerful than the aTAM. ALCH allows us to describe the DST
construction in a convenient high-level form. We can therefore abstract away details
of chemical species and reactions and reason at the level of algorithms.

The CRN-TAM Model

In 2015 Schiefer and Winfree introduced the chemical reaction network-controlled
tile self-assembly model, or CRN-TAM, to investigate interactions between non-local
chemical signals and self-assembly systems.

A CRN-TAM program is defined by finite sets of chemical signals, tiles, and reactions.
These reactions can act upon both signals and tiles.

e When a tile attaches to the assembly, it releases its removal signal into the solution.

e A tile’s removal can remove it from an assembly if it is bonded at strength 7, the
temperature.

The ALCH Language

We have created ALCH, an imperative langage that compiles into CRN-TAM sys-
tems. ALCH is similar to a subset of the C programming language and supports the
following operations:

e global boolean variables with assignment and logical operators
e while loops and conditional evaluation

e tile addition/removal and assembly activation /deactivation

e nondeterministic “branching” to query assemblies (see below)

ALCH does not support function calls; the call stack would require unbounded in-
formation storage. We also have not implemented numeric or compound data types.

ALCH: Basic Techniques

e Sequential execution: We control execution with line number species
{Xo, X1,...,X,1}. In general a reaction with X; as a reactant has X, as
a product. (Flow control structures link up line number species in different ways.)
Since there is exactly one line number species per execution thread present, reac-

tions execute in a controlled sequence.

e Boolean variables: We use a dual-rail system, where we represent a variable a
with two species (a, @).
e Returning values: For operators like && (logical AND), our compiler creates a

hidden variable to contain the return value. We can then “link” that variable to
any statement that requires the return value.

¢ Conditionals and loops: We can control execution by adding boolean variables as
catalysts to reactions that change the line number species. Since return values are
hidden variable species, we can also use logical expressions to govern conditionals.

ALCH: Branching and Multithreading

Sometimes we want to know which tiles can be added or removed. For example, we
might want to know which tile we just popped off of a stack. ALCH contains syntax
for “branch points”, which diverge into multiple “branch paths” containing reversible
tile addition/removal commands.

Branch
[Start Here]

T

Parallel

unbounded
add

<block2>

[Remove
l single single

<block3>

|
I‘E'Ill

{blockl>

[Set False]

Fig. 1: Execution flow through a branch (left) and a parallel region (right) with two single blocks and one unbounded
block. In the unbounded block, ALCH adds and removes tiles to track how many threads are running.

Users can also define multithreaded regions containing code blocks that execute
simultaneously, exploiting chemical parallelism. Each block can be “single”, where
ALCH spawns one thread, or “unbounded”, where ALCH continues to spawn threads
until receiving the signal to stop. ALCH tracks how many unbounded threads it
spawns and blocks until all are cleaned up, so parallel regions are fully modular.

2021 NSF Cyber-Physical Systems Principal Investigators' Meeting

June 2-4, 2021

Strict Assembly of the Discrete Sierpinski Triangle

Our construction of the discrete Sierpinski triangle (DST) measures the presence or
absence of tiles in a local 3 X 3 matrix, stored by chemical signals in solution. We
use the XOR characterization of the DST to determine where tiles should be placed.

measured calculated (XOR)
measured calculated (XOR)
—
N —) known
010 > _ from
P 0 S last
Kknown one step step
at start

|
next tile to add

Fig. 2: This figure shows how measured values are used to determine where tiles are placed.

We are able to temporarily attach scaffolding tiles. These tiles aid in the assembly of
the DS'T' by allowing us to access specific locations in the assembly and by restricting
the size of the frontier.

The blue tiles form the
column scaffold. These
restrict the frontier and
allow our probes to
check which bonding
sites are full and which
are empty.

The red tiles are a di-
agonal scaffold that al-
low us to attach a blue

The base tiles along column scaffold.

the lower axis are la-
belled either even or
odd. These labels help
us to avoid interference
from nearby columns.

H HN H HNE HE HNE HE HME HE

EOEOEOEOEDO

We can probe the assembly to determine where tiles should be placed. We accom-
plish this with ALCH’s branching mechanism. If the probe detects a tile it returns
a one to the matrix; if it detects the absence of a tile a zero is returned.

| e=single
empty « bonds
space ’[
detected filled
space
detected

Fig. 4: The left image shows the detection of an empty cell and the right shows the detection of full cell.

Our occlusion and measurement techniques are very general. With several modifi-
cations, we have adapted our algorithm to construct the Sierpinski carpet fractal as
well.

Award ID#: 1545028

