

Project Title

CPS: TTP Option: Synergy: Collaborative Research: Hardening Network Infrastructures for Fast, Resilient and Cost-Optimal Wide-Area Control of Power Systems

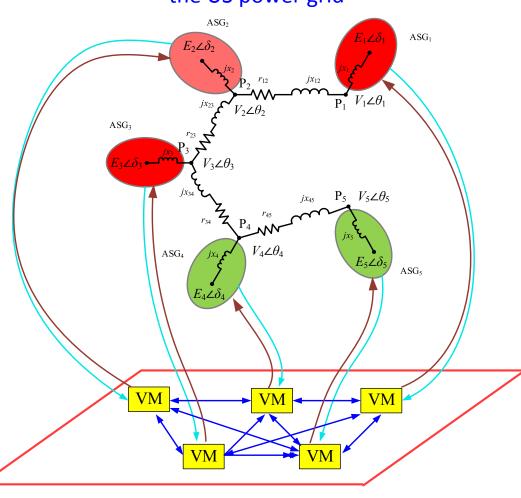
- Aranya Chakrabortty, Alexandra Duel-Hallen, Anuradha Annaswamy, Alefiya Husain
- NC State University, MIT, University of Southern California
- http://people.engr.ncsu.edu/achakra2
- E-mails: <u>achakra2@ncsu.edu</u>, <u>sasha@ncsu.edu</u>, <u>aanna@mit.edu</u>, <u>husain@isi.edu</u>
- Award number: ECCS 1544871

Description

Research Challenges for Wide-Area Control of Large Power Grids

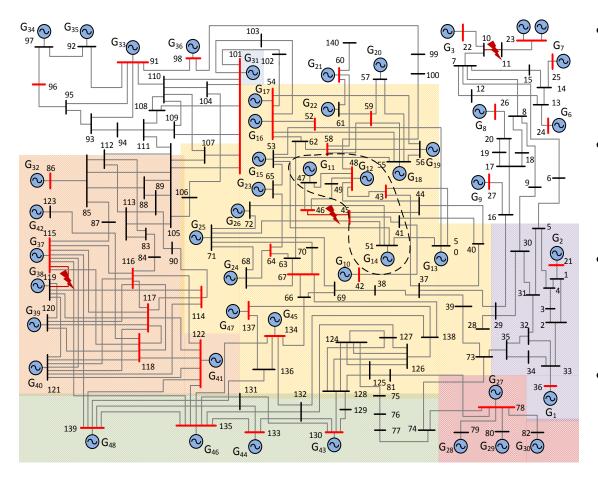
• <u>Time-scale for computation</u>

Real-time computing Fast numerical algorithms


Communication constraints and threats

Multi-cast, Routing Large inter-area delays Privacy of control gains DoS attacks

Control


Ensure sparsity
Accommodate delays
Maintain privacy
Use distributed computation
Utilize output measurements

Close the loop between cloud networks and the US power grid

Third-Party Private Cloud + Controllable Network

Findings

- Physical topology of the grid often exhibit strong clustering structure
- This structure can be used for sparsification of communication graph
- As much as 70% sparsity can be obtained for only a 5% loss in closed-loop performance
- Structural information changes with location and intensity of disturbances. So will the communication graph.

For more info about our CPS smart grid testbed at NCSU, please see project website!