
NSF CNS-1645681

 Cassandras C.G., “Automating Mobility in Smart Cities”, Annual Reviews in Control, Vol. 44, pp. 1-8, 2017.
 Zhang Y., Cassandras C.G., “Decentralized Optimal Control of Connected Automated Vehicles at Signal-Free Intersections Including Comfort-Constrained Turns and Safety Guarantees”, Automatica, Vol. 109, 2019.

PI:  C. G. CASSANDRAS, CO-PI: I. Ch. PASCHALIDIS (SYSTEMS ENG/ECE), BOSTON UNIVERSITY (BU)

CPS: BREAKTHROUGH: A DYNAMIC OPTIMIZATION FRAMEWORK FOR
CONNECTED AUTOMATED VEHICLES IN URBAN ENVIRONMENTS

User-Centric. Self-interested optimal traffic flows as a variational inequality 
(VI) problem:

Travel Time 
function

Equilibrium 
Traffic Flows

Set of Feasible 
Flow Vectors

System-Centric. Socially optimum traffic flows. 

(2)

TRAFFIC ASSIGNMENT PROBLEMS

(1)

MOBILITY-ON-DEMAND OPTIMIZATION

Estimate the parameters of the Traffic Assignment Problem from 
flow data to enable further optimization and control. Modeled as 
a Bi-level Program. Solved using a feasible-direction iterative 
algorithm.  

JOINT ESTIMATION OF OD DEMAND AND 𝐭𝐭(�)

Inverse Problem. Find travel latency cost functions given data flows.

(3)

 Eastern Massachusetts Area (EMA):
 Roads and topology: Provided by the  Boston Region Metropolitan Planning Organization (MPO). 

Includes flow capacity (veh/hr) for more than 100,000 road segments  in Eastern Massachusetts
 Speed: Provided by the MPO, Includes avg. speeds (mph) per-minute for major roadways and arterial 

streets in Eastern Massachusetts for 2012 and 2015
 New York City (NYC)
 Speed: Uber Movement 
 Demand: Taxi data records
 Roads and Topology: OpenStreetMaps (OSM) database
 Here Maps BU Platform
 Speed: Avg. speed and free flow data (5 min) on any city on the US and many around the world
 Roads and Topology: Based on Here Maps API

DATASETS

JOINT ENERGY AND TRAVEL TIME OPTIMAL CONTROL + CONTROL BARRIER FUNCTIONS FRAMEWORK

OCBF CONTROL:  OPTIMAL CONTROL (OC) + CONTROL BARRIER FUNCTIONS (CBF)

SELECTED PUBLICATIONS

s.t 1. Primal Inverse feasibility of (3)
2. Dual Inverse feasibility
3. Primal-Dual relaxed gap, 𝜉𝜉

TRANSPORTATION NETWORKS FOR ANALYSIS

Fig 6. Braess network, for validation 
and interpretability purposes

Fig 7. EMA network, for 
emulating highway conditions

Fig 8. NYC network, for 
emulating urban conditions

(a). Flow error (c). Travel Latency Cost Function(b). Demand error

Fig 5. Estimation results for a model validation example on the EMA network. 

(7)

LANE CHANGE MANEUVERS FOR COOPERATING CAVS

1. CAVs dynamics
2. Speed/Acceleration limits
3. Safety Constraints

Optimal solution is 
analytically tractable and 
guarantees safety constraints

Case Energy
CAVs Human Improvement

1 6.8 16.4 59%
2 23.0 46.0 50%
3 59.5 103.5 43%

The basic lane change maneuver 
process.

Fig 13. Three feasible cases for the optimal maneuver of vehicle C

(12)

A decentralized framework to optimally control CAVs at signal-free intersections including comfort-constrained turns and safety guarantees. 

CAV dynamics 
Constraints

Four subsets                   : rear-end collision at the end of MZ
(including turns)             : rear-end collision at the beginning of MZ

: lateral collision in MZ
: no collision in MZ

Read-end safety
Lateral safety                                                             where
Order constraint                    (can be relaxed by dynamic resequencing) Optimal solution is analytically tractable

Enters CZ Exits MZ

Enters MZ at time 

CAVs crossing urban intersection

Simulation of real intersection in Boston

Joint Optimization Problem
Control Zone

Merging Zone

Constrained Optimal Control Analysis

Travel time

Energy 
consumption

Passenger 
discomfort

 Xiao W., Belta C., and Cassandras C.G., “Bridging the Gap between Optimal Trajectory Planning and Safety-Critical Control with Applications to Autonomous Vehicles”, Automatica, Vol. 129, 2021.

 Chen R., Cassandras C.G., and Tahmasbi-Sarvestani A., “Cooperative Time and Energy-Optimal Lane Change Maneuvers for Connected Automated Vehicles”, IEEE Transactions on Intelligent Transportation Systems, 2020. 

Cases:
1. C accelerates to merge. Safety constraint inactive
2. C deaccelerates to merge. Safety constraint inactive
3. C accelerates to merge. Safety constraint active

System-Centric Routing and Rebalancing. Jointly select routes and 
rebalancing policies of an intermodal (vehicle, subway, walk, micromobility) 
Autonomous Mobility-on-Demand (AMoD) service.

Pricing and Rebalancing. Select surge prices and rebalancing policies jointly 
to maximize AMoD profit or social welfare. 

Fig 5. AMoD network consisting of three 
layers. Dashed arrows represent switching 
arcs.

Fig 5. Left plot shows the average travel time for different AMoD
penetration rates in NYC transportation network. Improvements are up 
to 50% in travel times. Right plot depicts the miles traveled per mode of 
transportation for each AMoD penetration rate.  

Policy AM MD PM NT
Only pricing 29.8% 8.8% 6.6% 26.0%
Only rebalancing 33.3% 28.7% 29.2% 40.7%
Rebalancing, then pricing 13.7% 9.4% 10.9% 15.8%
Jointly but a single surge price per origin 5.3% 5.3% 5.1% 7.0%

Table 1. Relative deviation in percentage of each policy compared to the joint pricing (considering 
origin and destination) and rebalancing policy obtained when solving (5) for different time slots. 
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s.t. 1. Demand is met
2. All nodes have available vehicles (network is balanced)

Rebalancing costUser travel time

(4)

s.t. All nodes have available vehicles (network is balanced)

Revenue Operational cost

Willingness-to-pay function

Rebalancing cost

(5)
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OPTIMAL SIGNAL-FREE  INTERSECTION CONTROL 

GET BEST POSSIBLE OC SOLUTION
WITHIN REAL-TIME CONSTRAINTS GET FEEDBACK OPTIMALLY TRACK WITH 

GUARANTEED SAFETY

𝑢𝑢∗ 𝑡𝑡 , 𝑥𝑥∗ 𝑡𝑡

𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡 , 𝑥𝑥 𝑡𝑡

𝑢𝑢∗ 𝑡𝑡 , 𝑥𝑥∗ 𝑡𝑡

𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡

𝑢𝑢∗ 𝑡𝑡 , 𝑥𝑥∗ 𝑡𝑡

𝐹𝐹(𝑥𝑥 𝑡𝑡 , 𝑥𝑥∗ 𝑡𝑡 , 𝑢𝑢∗ 𝑡𝑡 )

𝑥𝑥 𝑡𝑡

min
𝑢𝑢(𝑡𝑡)

� 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑢𝑢(𝑡𝑡) 𝑑𝑑𝑑𝑑

s.t. CBFs 𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡

Simplest case: 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡 = 𝑢𝑢∗ 𝑡𝑡
CBF constraints for State/Safety constraints

CLF constraint for terminal state cost:

Optimal Control problem:

Subject to:
Hard SAFETY constraints:

OPTIMAL MERGING CONTROL 

1. CAV linear dynamics,
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3. Safety:

Optimal Control solution is analytically tractable and guarantees 
safety constraints. Unconstrained: <<1sec. Constrained: 1-30sec2. Speed/Acceleration constraints,
OCBF solution (<<1 sec) nearly recovers OC solution and is 
analytically tractable, guarantees safety constraints, allows noise

With traffic lights

With CAVs – no traffic lights
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