NSF-1543830 CPS: Breakthrough: An Entropy Framework for Communications and Dynamics Interdependency in Cyber Physical Systems: Analysis, Design and Implementation (2015-2018)

Challenge:

- Communications are needed for controlling physical dynamics in CPS.
- What is the communication requirement for the control?
- How to design the communication scheme?
- What if the physical dynamics is networked?

Solution:

- Entropy framework: We use entropy to measure the messiness of the physical dynamics. Communications can be considered as negative entropy to compensate the entropy increased caused by random noise (ISIT'2015).
- We also study the propagation of entropy.
- A millimeter wave communication testbed is built to test CPS in 5G.

Millimeter wave communication testbed

Millimeter wave radar

PI: Husheng Li The University of Tennessee

Controller (demon)

Heat engine efficiency

Carnot's Heat Engine

Information engine efficiency (CDC'2016)

CPS Heat Engine

Experiments:

UAV networks

Communication in UAVs: we have tested the wireless communication performance on UAVs, in terms of packet drop rate

Millimeter wave for UAVs: We have tested the communication performance damage due to rotating blade in propeller UAVs

Broader Impact:

- The theoretical framework helps to better understand and quantify the communication requirement in CPS. Particularly, it enhances the design of communications in smart grids.
- Two PhD students are involved in the project.
- Three high school students are involved in the project, focusing on the implementation of controlling unmanned vehicles.

