Transactive Control of Smart Railway Grid

PI: Sudip K. Mazumder, University of Illinois at Chicago Co-PI: Anuradha M. Annaswamy, Massachusetts Institute of Technology

Motivation

This project investigates a method to reduce the cost of electric energy for the high-speed electric train network using datadriven decision-making process and bi-directional real-time communication between electric trains and the electric grid

Challenges

- **Real time data collection and storage mechanism**
- Formulation of transactive control problem
- **Selection of the energy source with minimum cost**
- Velocity adjustment of the train network
- Sharing energy between the trains

Solution

- Establishing reliable and secure communication link between the train network and the electric grid
- **Developing algorithm for selecting the minimum cost energy** based on the train schedule and location

Broader Impact on Society

- **High-speed electric train is a** sustainable and reliable way of transportation
- **Reducing the cost of energy for this** The optimization techniques used system makes it more cost-effective solve the railway dynamic market for the costumers mechanism involves novel method

Scientific Impact

- proposed method

with measured field data

Broader Impact on education

The mathematical formulation of transactive control is educational engineering students and research

Formulation of online negotiation process Solving constrained optimization problem Implementation of the transactive control system Mechanism for colleting data for verification of the

Proposing a two-Step optimization problem Introducing the railway dynamic market mechanism **Performing computer simulation and comparing the results**

	Broader future impacts
	 Data-driven decision-making is
for	adopted in many industries inclu
hers	cyber physical systems
to	• Electric train network could be us
	a dynamic energy storage system
ds	more resilient electric grid systen

