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1. Goal: Compositional Reasoning for Simulink

Powertrain	Control	Benchmark	Model
Toyota	Technial	Center

2014

Engine	Speed	Range:
[900	1000]

This	is	a	model	of	a	hybrid	automaton	with	polynomial	dynamics,	and	an	implementation	of	the	3rd	model	that	appears	in	
"Powertrain	Control	Verification	Benchmark",	2014	Hybrid	Systems:	Computation	and	Control,	
X.	Jin,	J.	V.	Deshmukh,	J.Kapinski,	K.	Ueda,	and	K.	Butts	

Pedal	Angle	Range:
[0,	61.2)	Normal	mode
[61.2,	81.8]	Power	mode	(the	controller	will	
																			stay	in	power	mode	until	the	pedal
																			input	drops	below	41.8)

1:	Feedforward
0:	Feedforward	+	Feedback
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Figure: Example: Simulink model of a Fuel Control System (public benchmark by Toyota)

• Compositional Static Analysis: detect inconsistencies, compute preconditions, eliminate internal variables, check
substitutability (when can a block replace another?), etc., at compile-time, without flattening!

2. The RCRS Framework (Refinement Calculus of Reactive Systems)

Powertrain Control Benchmark Model

Toyota Technial Center

2014

This is a model of a hybrid automaton with polynomial dynamics, and an implementation of the 3rd model that appears in

"Powertrain Control Verification Benchmark", 2014 Hybrid Systems: Computation and Control,

X. Jin, J. V. Deshmukh, J.Kapinski, K. Ueda, and K. Butts

Fuel Control System Model This model uses only the ODEs to implement the dynamics.
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Figure: RCRS Framework Workflow

3. The Algebra of Hierarchical Block Diagrams (HBDs)

Challenge 1: How to represent graphical diagrams in a textual notation with formal semantics?

• Basic blocks: represented as atomic monotonic predicate transformers (MPTs). Some examples:
• stateless basic block :

Constant
c

a is defined as: Constant = [() c]

• stateless basic block with precondition:

Div
a

b
c is defined as: Div = {a, b. b 6= 0 } ◦ [a, b a

b ]

• discrete-time stateful basic block (s: current state, s′: next state):

UnitDelayx y
s, s′

Simulink representation

UnitDelay

s

x

s′

y

Atomic MPT representation

is defined as: UnitDelay = [x, s s, x]

• continuous-time stateful basic block (fixed time-step integration with time-step parameter dt):

Integratorx y
s, s′, dt

Simulink representation

Integrator
dts

x

s′

y

Atomic MPT representation

is defined as: Integrator(dt) = [x, s s, s + x · dt]

• Block diagrams: represented as composed MPTs. Only 3 composition primitives:

Ax B zy

(a) Serial composition: A ◦ B

Ax y

Bz t

(b) Parallel composition: A ‖ B

Ax y

(c) Feedback composition: feedback(A)

Figure: The 3 Composition Operators in the HBD Algebra

Challenge 2: One graphical diagram, many possible translations:

d
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Figure: An inconsistent Simulink diagram

feedback(feedback(feedback(Constant ‖ Constant1 ‖ Div ‖ Scope)))

(Constant ‖ Constant1) ◦ Div ◦ Scope

Constant1 ◦ ((Constant ‖ Id) ◦ Div) ◦ Scope

4. Three Strategies for Translating HBDs to Algebraic Terms

• Feedback-parallel translation strategy (-fp option)

Constant
a

Constant1 b

Div
a

b
d

Scoped

feedback(feedback(feedback(Constant ‖ Constant1 ‖ Div ‖ Scope)))

• Incremental translation strategy (-ic option):

Constant
a

Constant1 b
Div d Scope ((Constant ‖ Constant1) ◦ Div) ◦ Scope

• Feedbackless translation strategy (-nfb option):

Constant
a

Constant1 b Skip b
Div d Scope (Constant1 ◦ ((Constant ‖ Skip) ◦ Div)) ◦ Scope

• All three strategies are implemented in the simulink2isabelle translator, and achieve different tradeoffs.

5. Formal Analyzer: Expansion and Simplification

d

b

a1

Constant

Divide0

Constant1

Scope

translation

simulink “DivIncomp = (Constant(1) ‖ Constant1(0)) ◦ Div ◦ Scope”

expansion

DivIncomp = {(λ(a, b).b 6= 0) ◦ ((λ(x, y).(1, 0)) ◦ (λu.((), ())))} ◦ [(λ(a, y).1 ∗ a/y) ◦ ((λ(x, y).(1, 0)) ◦ (λu.((), ())))]

simplification
DivIncomp = ⊥ (meaning that this model is inconsistent)

Challenge 3: Simplification generally involves non-trivial symbolic formula manipulations.

• We implemented fully automatic simplification algorithms on top of the Isabelle proof assistant.
• These generate an atomic MPT (“contract”) for the top-level system.

6. RCRS: a Contract-Based Framework with Refinement

• “Horizontal” contracts: MPTs are pairs of pre/post-conditions, e.g., {a, b. b 6= 0 } ◦ [a, b a/b].
• Used to: (1) check compatibility; (2) compute contract of parent system from contracts of subsystems.
• Refinement (“vertical contract”): allows to replace a component with another while preserving all properties.

• If S ′ � S (S ′ refines S) and S satisfies P , then S ′ satisfies P
• If S ′ � S and T ′ � T , then S ′ ⊗ T ′ � S ⊗ T where ⊗ ∈ {◦, ‖, feedback}

CA Z

CA B

;
Figure: Substitutability by refinement: component Z can replace component B if Z refines B

7. Case Study: a Fuel Control System (FCS)

• Benchmark provided by Toyota. Publicly available at: http://cps-vo.org/group/ARCH/benchmarks
• Simulink model:

• 3-level hierarchy
• 104 blocks: 97 atomic blocks and 7 subsystems
• 101 links of which 7 feedbacks

Powertrain	Control	Benchmark	Model
Toyota	Technial	Center

2014

This	is	a	model	of	a	hybrid	automaton	with	polynomial	dynamics,	and	an	implementation	of	the	3rd	model	that	appears	in	
"Powertrain	Control	Verification	Benchmark",	2014	Hybrid	Systems:	Computation	and	Control,	
X.	Jin,	J.	V.	Deshmukh,	J.Kapinski,	K.	Ueda,	and	K.	Butts	

Fuel	Control	System	Model This	model	uses	only	the	ODEs	to	implement	the	dynamics.
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Figure: Model 3: the largest subsystem of FCS

Figure: Screen shot of the auto generated top-level contract for FCS
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Figure: Simulink simulation of the FCS model
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Figure: Simulation of RCRS auto generated code

FPT IT NFBT
HBD IO-HBD

Translation
Translation time (secs) 0.367 0.196 0.194 0.404

Total algebraic term length (chars) 8969 49241 48569 31856
Number of terms 2 2 50 64

Simplification and
compatibility check

Expansion and simplification time 9139.37 2089.64 1704.206 17.141
Simplified term printing time 1.152 1.642 1.317 1.894

Simplified term length 47481 47487 47487 47482
Table: Experimental results

• The FCS Simulink model is proven compatible ∀dt > 0, i.e., the model’s simplified precondition is satisfiable ∀dt > 0
(proved in the Isabelle theorem prover).

• Translation validation: simulation plots obtained from the FCS model using Simulink vs. the RCRS tool are nearly identical,
|error| ≤ 6.1487 · 10−5.

8. Main Publications

• I. Dragomir, V. Preoteasa, S.Tripakis. The Refinement Calculus of Reactive Systems Toolset. Submitted 2017
• V. Preoteasa, I. Dragomir, S.Tripakis. The Refinement Calculus of Reactive Systems. Arxiv 2017
• V. Preoteasa, I. Dragomir, S.Tripakis. Type Inference of Simulink Hierarchical Block Diagrams in Isabelle. FORTE 2017
• S.Tripakis. Compositionality in the Science of System Design. Proc. IEEE 2016
• V. Proteasa, I. Dragomir, S.Tripakis. A Nondeterministic and Abstract Algorithm for Translating Hierarchical Block

Diagrams. Arxiv 2016
• V. Preoteasa, S.Tripakis. Towards Compositional Feedback in Non-Deterministic and Non-Input-Receptive Systems. LICS

2016
• I. Dragomir, V. Proteasa, S.Tripakis. Compositional Semantics and Analysis of Hierarchical Block Diagrams. SPIN 2016
• V. Preoteasa, S.Tripakis. Refinement Calculus of Reactive Systems. EMSOFT 2014
• S. Tripakis, B. Lickly, T. A. Henzinger, E. A. Lee. A Theory of Synchronous Relational Interfaces. ACM TOPLAS 2011

http://rcrs.cs.aalto.fi
http://cps-vo.org/group/ARCH/benchmarks

