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Smart	Meter	Data	Falsification
Ø Organized,	Persistent	Adversaries

§ Circumvent	cryptographic	defense	
§ Compromise	a	large	#	of	meters	
§ Attacks	persist	and	evolve
§ Mask	easy	consistency	check
§ Knowledge	of	business	and	revenue	

models

Ø Challenges

§ Consumption	exhibits	 inherent	
fluctuations

§ Distinguishing	 between	legitimate	
and	malicious	changes

§ Large	no.	of	compromised	nodes	
with	smaller	margin	of	false	data

§ Various	falsification	types

Proposed	Framework:	Overview
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Light	weight,	Real	Time	Anomaly	Detection;	Not	privacy	intrusive;	
Works	for	various	attack	types;		Distinguish	between	legitimate	and	
malicious	changes;	Suitable	for	both	isolated	and	organized	rivals

Ongoing	Research

Ø Stealthy and Persistent Attacks
§ Advanced Information Theoretic Approaches beyond divergence measures
§ State-less (short term) and State-full (long term) Detectors. 
§ Decrease the false alarm rates without sacrificing detection rate.
§ Margins of false data below 400, Unsupervised and scalable.

Ø Robust state estimation
§ Silent state perturbation mechanisms with partial knowledge of network 

parameters
§ Mitigation mechanisms

Ø PMU data falsification
§ Identify compromised meters
§ Formalize supervised and unsupervised learning techniques

Ø Challenges
§ Most	recent	mp in	substations	 use	
ARM	Cortex-M	cores

• Cannot	meet	4ms	requirement	for	hash	based	
integrity	checking	or	encryption

§ Need	a	very	light	weight	but	secure	
mechanism.

Ø Our	Approach
§ Permutation	only	encryption

Ø Algorithm
§ Generate	16-bit	Fletcher	checksum
§ Generate	a	set	of	random	numbers	
based	on	a	seed	

§ Sort	the	numbers	&	use	them	as	
offsets	for	checksum	bits

§ Hide	checksum	bits	in	the	message
Ø Key	management

§ Initially	communicated	to	all	
receivers	securely.

§ Salted	with	status	and	renegotiated	
when	counter	rolls	over.

Ø Security	Analysis
§ 96	bit	security
§ Key	salting	ensures	security	against	known/chosen	

plaintext	attacks
§ Success	probability	before	the	key	changes	is	

negligible.	
§ Secure	from	off-path	attacks

Ø Performance	Analysis
§ Real	implementation	on	a	48	MHz	ARM	cortex	mp

Ø Publication:	Kant,	K.	and	Jolfaei,	A.	2017.	A	
Lightweight	 Integrity	Protection	Scheme	for	
Fast	Communications	in	Smart	Grid,	14th	
International	Conference	on	Security	and	
Cryptography	(SECRYPT),	Jul.	24--26,	
Madrid,	Spain,	pp.	31-42.

Integrity	of	Protection	Messages	

Ø Goal:
§ Damage power equipment
§ Increase systemoperation costs
§ Disproportionate powergeneration/dispatch or energy routing
§ Cause economic loss

Ø How?
§ Perturbing the state estimation
§ Fooling the system operator to make unnecessary and costly actions,
such as generator rescheduling and load shedding.

Ø Assumptions:
§ IEC TR 61850-90-2 allows sending protectionmessages inplaintext.
§ Active adversarywith MitM attackcapability.
§ Adversarialknowledge:

• Known: bad data detection threshold, i.e., # of states and measurements,
topology of the power grid

• Unknown: accurate knowledge of Jacobian measurement matrix.

Silent	Perturbation	of	State	Estimation

Sensitivity Analysis

Proposed	Trust	Model																	
Ø Robust	consensus	formed	through	anomaly	detection
Ø Use	a	Kullback-Leibler	Divergence	between	historical	and	current	
proximity	distributions	of	smart	meter	to	the	robust	consensus	𝑅"

Historical Proximity 

Current Proximity 

𝑿𝒊 𝒕 à probability parameter 𝒓

𝒀𝒊 𝒕 à probability parameter 𝑞

à Kernel Methods

Proposed	Anomaly	Detection

Ø A	rise	in	the	absolute	
difference	of	HM	and	AM	is	a	
reliable	indication	of	
occurrence	of	organized	
falsification

Ø Anomaly	detection	metric	is	
stable	without	any	
smoothening	average	
technique	

Ø The	property	holds	for	all	
different	datasets	studied.
e.g.	Texas,	Ireland	datasets

HM	to	AM		absolute	
difference	(AD)	is		a	
stable	invariant	

AD metric	sharply	
increases	for	all	types	of	
Data	Falsification

Performance	Evaluation
Ø We	use	real	data	set	from	PECAN	

Street	Project	(SmartGridGov)	
and	Irish	Data	Sets.

Ø We	emulate	attacks	on	real	data	
fed	to	a	virtual	simulated	AMI

Ø We	observe	clears	difference	
between	compromised	and	non-
compromised	nodes.

Ø Results[1]	are	better	due	the	
robustness	of	statistical	
measures	used	in	various	steps

Detection = 100%
False Alarm = 8.3%

Detection = 99%
False Alarm = 9.2%

Objectives:	
• Characterize inter-dependence between electrical 

grid and communication systems
• Secure protocols for state estimation more robust 

in transmission and distribution network. 
• Assure Data Integrity from Advanced metering 

infrastructure and customer network.
• Build various models for attack mitigation. 
• Validate with micro-grid test-bed and real 

datasets

Scientific	Impact:	
• Anomaly detection 

and trust models for 
attack mitigation

• Situation-aware 
models for threat 
monitoring, analytics, 
decision control

Challenges: Inter-dependence,	 IoT	
Robustness,	Cyber-Physical,	Big	Data
• Integrity mechanism for protection and state 

estimation
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Broader Impacts: 
• Influencing the standards
• Multi-disciplinary training in CPS 

security
• Experiential learning in real micro-

grid facility.
• Outreach and research demo
• Generalization to other CPS

Missouri S&T Micro-rid 

S. Tan, D. De, W. Song and S. K. Das, “Security Advances in Smart
Grid: A Data Driven Approach,” IEEE Communications Surveys and
Tutorials, 2017.
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• Kant, K. and Jolfaei, A. 2017. On the Silent Perturbation of State Estimation in Smart Grid, IEEE Journal of 
Selected Topics in Signal Processing, Under Review.

Algorithm Speed (KB/s)

Proposed Method 424
MD5 147

ChaCha20-Poly1305 94

AES-128-CCM 70

AES-128-EAX 70

AES-128-GCM 41

Evaluation	

Attack	Procedure

Ø Attack	Models
§ Additive
§ Deductive
§ Camouflage
§ Conflict
§ Incremental	Evolving,	On-

Off	attacks,	Omission,	Order	
Aware	Falsification	
Strategies

Ø Bypass bad data detection
§ Malicious measurements pass the bad measurement detection if the L2

norm of the attack vector ≤	the bad data detection threshold.

ØAdversary reconstructs the entries of measurement
Jacobian matrix within the maximum error margin of
a small percentage.
§ Small perturbations in the measurements can lead to a large drift

in the state value if the smallest singular value of the Jacobian
measurement matrix is small.

Ø It is theoretically/practically impossible to spoof a
large number of measurements at once.
§ States are perturbed partially/gradually in different rounds of state

estimation.

ØDrift state values within a desired range
§ Linear unidirectional changes in voltagemagnitudes and phase angles.
§ Impulsive and/or oscillatorymodifications.
§ The acceptable rangeof voltage amplitude variation iswithin ±5%.

Bhattacharjee, Thakur, Silvestri, Das, et.al. “Statistical
Security Incident Forensics against Data Falsification in
Smart Grid Advanced Metering Infrastructure,” ACM
CODASPY, 2017.


