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Interactive path planning and sensor placement in an
unknown spatiotemporal field
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connectivity is required to guarantee safety. planning; bootstrapping algorithm
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Spatiotemporal field signifying the threat of collisions;

Analyze and quantify possibility of potential collisions. uncertainty quantification of this field given
uncertainties in connection latencies and noise.

Fast trajectory planning. Trajectory with minimum threat exposure.

Connected autonomous golf cart with onboard
implementations of aforesaid algorithms; simulated
traffic conditions and potential collision environments.

Experimental objective — Demonstrate principal features
of scientific and engineering outcomes

The proposed iterative sensor placement approach
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Connectivity selection and collision threat estimation
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* Construct model of threat field evolution using _
planned trajectory..

models of other vehicles” motion and ego vehicle’s ' el

* Determine a spatiotemporal domain of interest

planned trajectory.
where high-ranked data nodes lie.

e Use data from V2V comms and from ego vehicle’s
onboard sensors to provide indirect measurements

of threat.
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Snapshots of “threat” field in a traffic situation at different time instants

Adaptive beamforming for V2V communications

* Beamforming using phased-array antenna is a promising
method to establish low-latency reliable V2V links in
congested environments

* Localization errors can significantly affect link quality

* Coupled state-estimation (with measurements from an
overhead channel) and beamforming can mitigate the impact
of localization errors
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Halfcar dynamical model for ego vehicle Method of lifted graphs

* Incorporate vehicle dynamical constraints in fast
graph-based geometric path-planning algorithm.

* Objective is to find path with minimum expected
threat.

* Edge transition costs in 1 : 3
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* Spectrum-sensing controller (SSC): coarse-resolution wideband frequency scanning.
* Adaptive multi-beam controller (AMBC): fine-resolution scanning in areas of interest; related to P u bl |Cat|o ns

domains of interest identified by trajectory planner.
 Beamforming will enable faster spectrum sensing and also spatial filtering to increase
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