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Goal and Motivation Workflow

We aim to create a next-generation biological cyber- Learning Patterns Multicellular Simulation
physical system (bioCPS) in which desired global

behaviors can be achieved in populations of living cells
through the identification and characterization of local
behaviors. The ability to synthesize systems that control
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data is collected and fed into an analysis method that Output = f (Input, P)+ & | . . .
creates for biological modules and P = argmin(z) e Blological Cyber-Physical Systems
their compositions. Simultaneouslv. a desired pattern or Microrobots are used for communication, sensing, and control in cellular networks. They can: _ _
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b e |/ [ef0]00]0]01 We explore microrobot-based cellular placement
and actuation using magnetic manipulation
(collaboration with SRI International). In this image,
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