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We aim to create a next-generation biological cyber-
physical system (bioCPS) in which desired global 
behaviors can be achieved in populations of living cells 
through the identification and characterization of local 
behaviors. The ability to synthesize systems that control 
biological patterning could lead to advances in 
manufacturing, amorphous computing, tissue engineering, 
and drug development. For instance, differentiation of 
pluripotent stem cells in tissue or organoid engineering can 
be mapped to a pattern formation control problem.
To achieve this goal, we equip cells with sensing, 
communication, and decision making capabilities using 
methods from synthetic biology. Additionally, micron-scale 
mobile robots assist in optimizing the formation of patterns 
by affecting communication through opto-genetic triggering 
of genetic circuits or by moving cells and signals.
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Workflow Summary

Our workflow involves six main steps. First, experimental 
data is collected and fed into an analysis method that 
creates mathematical models for biological modules and 
their compositions. Simultaneously, a desired pattern or 
behavior is defined by a user and is converted into a 
formal specification using machine learning techniques. 
Next, the biological models are characterized using the 
same formal language, and design space exploration is 
performed to identify the design that behaves as close to 
the user-defined behavior as possible. The selected 
design's behavior is then verified using a multicellular 
simulation. If the design is validated, then modular DNA 
construction techniques are used to synthesize the 
genetic circuit. Finally, microrobotics are utilized in the 
physical system to aid in communication and sensing and 
to provide precise top-down control of cellular patterning.
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In (a), the red cells 
express a “sender” 
module, and the 
nearby green cells 
are “receivers”. 
Genetic circuits 
could control stem 
cell differentiation, 
giving rise to 
synthetic functional 
tissues such as 
embryonic liver 
tissue (b).
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Experimental Design
Microrobots are used for communication, sensing, and control in cellular networks. They can:
•  Carry sensor cells attached to a synthetic substrate,
•  Control microscopic light patterns, and
•  Manipulate individual cells.
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We explore microrobot-based cellular placement 
and actuation using magnetic manipulation 
(collaboration with SRI International). In this image, 
a magnetically controlled microrobot moves an 80 
uM SU-8 plate, which is on the order of the size of a 
mammalian cell.

For fine-scale control, microwires are patterned in a 
substrate creating significant local variations in 
magnetic fields. By controlling the interaction of 
these fields, we can simultaneously and 
independently control several magnetic 
microrobots.

Raven uses dynamic 
programming to plan 
the DNA assembly of 
synthetic genetic 
circuits.

Puppeteer plans the actual 
DNA manipulations 
necessary to build the 
synthetic genetic circuits. It 
can execute them 
automatically on a liquid 
handling robot.

Tools for Modular DNA Construction

Learning Local Behavior Specifications
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