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The central question What is different in CPS?

How can we, in a dafa-aware world, design and | \ - Safety-criticality
operate CPS differently? data ‘ - Obey the laws of physics

field and test data - Heterogenous data at run time while
Why? fault legacy models control closing the loop

management libraries synthesis
- humans’ insights - Possibility for proactive data collection

run-time data . QL .
- Sometimes “big” yet often scarce data

Increasingly difficult and costly to develop CPS.

The approach
Data-driven methods complementing model- b \erification and testing
based design and respecting the needs of CPS

Physics-guided, data-driven modeling and control for inkjet 3D printing
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 Based on conservation laws: guaranteed « Needs 60x less training data « (Geometry-agnostic: train on geometry, transfer
stability, input output passivity because of embedded structure to a different geometry by changing the graph
Safety-guaranteed, data-driven control Learning to optimize
Control a system with | )
. : min J(U, X)
unknown dynamics while U
avoiding an unsafe set Bad set subject to,
(Dynamic Constraint) x;y1 = Axt + Bug,

Key enabler for learning based control

« Stay safe while learning about the
system

* Provides a “safety guard” that can
be easily incorporated into existing
learning-based framework

(Safety Constraints) h:;Txt < gé
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Key ideas
* Reduces to a tractable convex optimization
* The structure of the optimization can be exploited to reduce computational

complexity Distribution of Compiled as combinatorial
planning instances optimization problems
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