Data-Driven Cyberphysical Systems

Univ of Texas at Austin

Univ of California at Berkeley

Northeastern Univ

California Inst of **Technology**

Physics-Guided Data-

Rensselaer Polytechnic Inst

Topcu

Fish

Dillig

Caramanis

Sangiovanni-Vincentelli

Sznaier

Mishra

Yue

What is different in CPS?

- Safety-criticality
- Obey the laws of physics

Sensor Measurements

- Heterogenous data at run time while closing the loop
- Possibility for proactive data collection
- Sometimes "big" yet often scarce data

The central question

How can we, in a *data-aware world*, design and operate CPS differently?

Why?

Increasingly difficult and costly to develop CPS.

The approach

Data-driven methods complementing modelbased design and respecting the needs of CPS

Physics-guided, data-driven modeling and control for inkjet 3D printing

 Based on conservation laws: guaranteed stability, input output passivity

 Needs 60x less training data because of embedded structure

Inkjet 3D Printer Driven Model Physics-Based Model Layer-to-layer Data-Driven Mode

> Geometry-agnostic: train on geometry, transfer to a different geometry by changing the graph

Safety-guaranteed, data-driven control

Control a system with unknown dynamics while avoiding an unsafe set

Key enabler for learning based control

- Stay safe while learning about the system
- Provides a "safety guard" that can be easily incorporated into existing learning-based framework

Bad set Control-Invariant Set

Key ideas

- Reduces to a tractable convex optimization
- The structure of the optimization can be exploited to reduce computational complexity

Learning to optimize

Distribution of planning instances Compiled as combinatorial optimization problems

Key insight

- Many solvers are sequential, e.g., gradient- or coordinate-descent
- Can view a solver as "agent" or "policy" making decisions

