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We present a formal scenario-based testing methodology on the safety of autonomous vehicles, especially those using advanced artificial intelligence-based components, spanning both simulation-
based evaluation as well as testing in the real world. Our approach is based on formal methods, combining formal specification of scenarios and safety properties, algorithmic test case generation using
formal simulation, test case selection for track testing, executing test cases on the track, and analyzing the resulting data. Experiments with a real autonomous vehicle at an industrial testing facility
support our hypotheses that (i) formal simulation can be effective at identifying test cases to run on the track, and (ii) the gap between simulated and real worlds can be systematically evaluated and

bridged.
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Fig. 6. Trajectories from a track test and 5 resimulations respectively
for the AV (green/blue) and the pedestrian (orange/yellow). Color darkness
indicates time. Scenarios: S1 Run 2 (left), F1 Run 1 (right).
Broader Impact: References
Our methodology is directly applicable to testing self-driving [1] D. Fremont, T. Dreossi, et al, “A language for scenario
cars at track testing facilities to identify effective test cases, specification and scene generation,” Programming Language
which is crucial for a scalable testing. However, at a larger Implementation and Design (PLDI), 2018 Unsafe Tests in Simulation = Unsafe in Real World: 62.5%
scope, this methodology is applicable in testing systems which [2] Daniel Fremont, Edward Kim, et al. “Scenic: A Language for
operate in a dynamic, interactive, and multi-agent Scenario Specification and Data Generation,” Safe in Simulation = Safe in Real World: 95%
environment which can be modelled as scenarios. nttps://arxiv.org/abs/2010.06580

From education perspective, the outcome of our experiment 3] T Dreossi, D. Fr.emont,-e.t fal. VerlfAI: A Toolkit for the F(?’rmal
Design and Analysis of Artificial Intelligence-Based Systems,

across simulation and reality signifies the sensor realism issue . . .
_ Y g , International Conference on Computer Aided Verification (CAV),
where autopilot may perform differently on synthetic versus July 2019

real sensor data.
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What.Can Simulation Teach Us About Grasping 3D Deformable Objects?

Isabella Huang, Ruzena Bajcsy, in collaboration with NVIDIA

Motivation ) ( Contributions

Grasping deformable objects is underexplored in robotics, and
can even be unintuitive for humans. We seek to build intuition
for deformable grasping through simulation of ~4600 grasps

B > «7@

(A) For a broad set of candidate grasps on a deformable objects,

S , ' (B) We simulate the object’s response with FEM,
How would ZO” %ZZSP eacth of tl'zss;dle]zrmablf obj ectts.tD gorm”th Shl‘;”éd be (C) Measure 7 performance metrics (e.g, stress, controllability), and
THILITIZEE OTL D CUp 10 G00LA GISTOARIN 1S COMICILES. Sresses sHoutd ve (D) Identify 7 pre-pickup grasp features (e.g. squeezing distance, gripper

minimized on the tofu to prevent breakage. On the teddy bear, any grasp works. . _ . .
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DEC-LOS-RRT: Decentralized Path Planning for Multi-robot Systems with Line- of-5|ght

Constrained Communication [To Appear in CCTA 2021] — - e

Victoria Tuck, Yash Vardhan Pant, Pls: Sanjit Seshia, S. Shankar Sastry
https://vehical.org

Project Goal

A decentralized algorithm that given line-of-sight communication between b
agents (including via multi-hop), has agents | '

Agents can only communicate
with agents in their subgraph. A

* reach their goal position from a valid starting position 10""' °: sgt?graphols defined by an agent's
. | g0al p . &P — visible neighbors and any agent
* avoid static obstacles in a known space ©  Current position in a visible neighbor’s subgraph.
. . . . O O Goal position
* maintain a desired distance from other agents S
50 Communicati?)n link
DEC-LOS-RRT Algorithm
Algorithm assumes valid starting positions, instantaneous stop, lossless 20.0
o =" N —— Agen
communication with no latency, and single integrator dynamics. 11 t the DEC-OS-RRT 175 - & (Bl x  x, — rgent2
. . agents run the -LOS- il |1 SEEITECSI N — Agen
1. Start base RRT-based, safe, decentralized algorithm for each subgraph g . . 15.0 - } ﬂ p— rgent
_ _ . Algorithm. Safety is assured. —_— AN ? Neo] i — Agents
.. = I i€ SIi I __L__J \\, Agent6
2. Update agent waypoints per base decentralized algorithm | Although it is not quaranteed c J :, A= noentt
3. Stop movement when subgraph changes (e.g., a new agent is seen) that agents will reach their final £ .. N i b A
4. Restart base decentralized algorithm for new subgraph of agents positions, most runs resulted in . SIS i T
5. Repeat 2-5 until all agents reach their goal or a lock is reached goal attainment. s ) ’ x/\)" SCaE :
l—_==J 0O
The algorithm introduces the use of delta obstacles. In the right figure, 0.0 - ; - - - -
green, solid boxes are obstacles, and blue, dashed boxes are delta obstacles. x Position (m)

Avoiding delta obstacles with use of instantaneous stop ensures safety.

Future Directions: Assumptions such as instantaneous stop and single integrator dynamics limit applicability. In future iterations of this project, we will approach
a similar problem for differentially flat systems with more realistic communication and jerk models.

CPS Applications: Low-power communication links that cannot be established through solid obstacles may necessitate an algorithm that accounts for the
possibility of an impending crash with an agent that is close but not yet seen. Additionally, such an algorithm would assist autonomous vehicles in avoiding
situations where a hidden pedestrian moves into a position that the vehicle cannot avoid.

Broader Impact: In large CPS fleets, a centralized solution to the communication constrained setting will likely not scale, necessitating a decentralized solution
that can be trusted in safety-critical societal systems.

Outreach Participation by Authors: Bay Area Scientists in Schools, Girls in Engineering, Be A Scientist
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Model-based Formalization of the Autonomy-to-Human Perception Han/d,-off .

Yash V. Pant, Balasaravanan T. Kumaravel , Ameesh Shah, Erin Kraemer, Marcell Vazquez-Chanlatte, Kshitij Kulka,rngi,\
Bjoern Hartmann, Sanjit A. Seshia |

https://vehical.org/

Motivation: Autonomous vehicles (AVs) are far from achieving Full-Self Driving’” and need to bring the driver into the decision-making loop in safety-critical situations. This
however ensures safety only when the human is attentive and makes a correctly and timely decision. We focus on the perception hand-off, where an AV’s perception module
requires human supervision to interpret the environment. We formalize this Human-Robot Interaction (HRI) to develop an approach for modeling and influencing human
attention, even in the presence of a non-driving related task (NDRT), for timely and correct decision making in perception hand-offs.

Challenge problems: odie. [ Ervironment Web-based human study (40 participants):
. . « o . Environment istractor .
1. How does attention impact human decision-making Queres l ”(r}mﬂ J Query-based AIG mechanism
1 1 - 11 1 1 ? 0 Queries ) . e .
in safety and time-critical situations: T ) A | ! uman Driver 0 Dual-task: Driving related (primary) and
How does attention evolve over time? Agfgggj e simple arithmetic (distractor, or NDRT).
. . . . ‘ response . .
How can attention be estimated and influenced via ol d Key insights: _
. . . . 3 : e Exe <7
active information gathering (AlG): Perception hand-off: The AV 0 Presence of NDRT degrades human I N -
Scientific i ;. queries the human driver when its | qi e e At 1S the boxed item?
cientific impact: serception module requires help in response (slower and incorrect). ~
Human-aware Model-based design for the Operator- decision making, or to influence the 0 AIG actions can improve human response Sl Ul Tl | | .L__(' b)
. human’s state of attention. Further Dual-task experiment: The human identifies
Autonomy interface. nfluencing the state is a NDRT. times (= 7%) in the presence of NDRT. objects, while also solving arithmetic problem:s.
Methodology: Model-based perception hand-off Simulation study with learnt POMDP model as a surrogate for the human
. e e e~ i om e~y T e [1,0 -——— L R — e Policy Reward (R) Tres * 100 q1GA .y PER
] Partial ly Observable Markov Decision Process (POMDP) @ | *_ @ %gz S — Le{;rngd 15?5;; é+z7 [56 £ 003 95.& 2.8 : 0.83 - ?}%12
- =00 e No AIGA | 11.29 £ 555 | 1.57 &= 0.07 | 92.8% 3.9 0
model with novel structure. £ 3; L " Random | 11.78% 642 | 1.55 & 0.04 | 95.4 £ 3.1 148 £ 0.14
. . A 2 T Belief 13.83 = 4.39 | 1.54 4= 0.03 | 95.9 4= 2.8 2.9 £+ 0.11
1 Hidden states are attention levels ([; < [, < - < [y) . 2 05 — . T
--------------- 2,0 f----> 04 - ET s Simulation results: Optimal Learned’ policy for a reward
. . . : Insight: Higher probability of , =
] Actions are qgueries from the perception module or g 0o r (R) that incentivizes correct and fast responses from the
o , , , R 502 correct (and early) response ) basel Hod
active information gathering actions Simplitied POMDP state-space: Blue| | = o/ - - uman, verses baseline methods.
| | arrows show transitions of o. When human is attentive. * The fraction of perception hand-offs correctly
1 Observations are human responses over time attention in absence of queries. o x 3 responded to (f) is highest for this policy.

Time steps into query ¢

Red and green arrows show Observation probabilities: Learnt probabilities of It also uses fewer A;G qu}eries{per}each perception
” : - AIGA}. PER
transitions when queries are active. correct response vs time steps into query, when hand-off query (#a Ha ) than other non-

- Compute policy for AIG actions Two attention levels for simplicity. latent state is attentive (blue) and inattentive (red).  trivial baselines.

. Learn parameters from human study data

Conclusion and ongoing work Potential broader impact Education and Outreach:

(societal):

Researchers from the project served as
mentors in the UC Berkeley Girls in
Engineering program, serving as technical
experts. They also discussed their research
with the school-going participants.

. Model-based formulation allows for estimating and

influencing human attention for safer perception hand-offs.| W Improved safety of autonomous

 Immersive human study in development to overcome and semi-autonomous vehicles.

limitations of current setup, and to add richer signals to  Principled operator-autonomy
improve modeling. interaction beyond AVs.

Uber crash in Arizona, 2019.
Image from NTSB report.
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Specifications from demonstrations; A Maximum Entropy Approach
Marcell Vazquez-Chanlatte Sanjit A. Seshia

What was the agent trying to do? Symbolic Maximum Causal Entropy Likelihood Estimatation

Key Observation: Can think of soft constraint as binary reward.

ra(€) = X-1[€ € ¢]

e By adding history to state space, can reduce to Maximum Causal
Entropy Inverse Reinforcement Learning.

® Problem: Potential combinatorial explosion.

e Solution: Encode MDP as a Binary Decision Diagram.

Dynamics

Actions ={T, |, «, =}
Probability 3% to slip and move «.

Rules

1. Go to and stay at the yellow tile.

2. Avoid red tiles.

3. If you enter a blue, touch a browmn
tile before recharging.

1. Write the composition of the dynamics and property as a
circuit with access to biased coins.

Q: Did the agent intend to touch the red tile?

Coin flips
o Spec Policy Size ROBDD R.elat.ive Log
Coin flips ——3 Likelihood
Dynamics Dynamics Specification | (#nodes) build time (Compared to True)
Given unlabeled demonstrations, learn a formal Action Bits —3» () true 1 0.48s 0
specification that "explains" the teachers behavior. @1 =rule 1 1628 1.2s 5
o =rule 2 1797 1.5s -22
@3 =rule 3 750 1.65 10
@5 = @1 N Q3 1913 1.5s -2
Problem 1: Requires a “common currency” for reward. e = P2 N Q3 1842 2S 15
Ye"°W=”°°&-/ J%i w Yoo = ij @, =@1 N@2 NP3 577 1.6 27

-
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Littman, Topcu, Fu, Isbell, Wen & MacGlashan (2017)

Contributions

1. Robustly learn trace properties from unlabeled
demonstrations in Markov Decision Processes.

2. Symbolic approach for efficently representing Markov Decision
Processes as Binary Decision Diagrams.

[smax]| [smax]|
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Conservative size bound:

3. We show you can efficiently compute maximum causal
entropy policy on compressed MDP.

Application: Used to learn temporal logic constraint from unlabeled
demonstrations, e.g.,

¢ = "Avoid Lava, eventually recharge, and don't recharge while wet."

Key observation: ¢, more likely than consistent specifications.

1. Teaching through demonstrations.
2. Inference in continuous domains.
3. Data driven concept classes - Natural Language Processing,
Sampling consistent automata, etc.
4, Estimating Membership Queries: Is a given behavior is ok?




Rules.of the Road: Formal Guarantees for Autonomous Vehicles with Behavioral Canﬁéét‘ =

Design Pt ik

Karena X. Cai*, Tung Phan-Minh*, Pls: Richard M. Murray, Soon-Jo.Chung, California Institute of Technblogy
https://vehical.org e,

Abstract:

The ability to make formal guarantees on safety and performance for autonomous vehicles in highly-interactive, dense environments largely remains unsolved. With a well-defined behavioral contract, we can
not only provide formal guarantees on agent safety and progress, but we also have a mechanism for assigning blame when accidents invariably occur. In this paper, we define a behavioral contract for a particular
class of agents on a road network environment in a quasi-simultaneous discrete-time game. We provide proofs of correctness of the behavioral contract and validate our results in simulation.

Challenge: Scientific Impact:
How do we design a .hlgh-level decision makl.ng strategy for Agent strategy (defined in a discrete-game and in specific road network environments that provides:
autonomous agents In environments to
behave ‘correctly’, i.e. be safe, be lawful, and make progress
towards its destination? ] Safety guarantee Performance guarantee Scalability & Interpretability Notion of Blame/Liability
Ext | h ” i b . Safety Theorem Liveness Theorem TIER 1 dy;i?.e’?;c unlzgzicrfd :;?;Cy C; = (A;,Gj)
xtreme y cna eng|ng ecause. Given that allagentsé;lge% in the quasi- Given the hold, and P e egal Vje JVie j—j.Gj C A,
. . . simultaneous game select actions in at all agents in the auasi- TIER 2 | trafficlight  lane-change clearance orientation
* Robot-freezing problem and unbounded rationality. crordance to e agent protocel defined, o B e i .
. . . we can show the accordance to the agent protocol define TIER 3 reachability s :
° JOInt aCt|On Space grOWS exponentla”y' P = 0Q t we ca?] shOV\t/ a;clhageits f/vl?ll e:cven’l:alfy i . ?eﬁ/n;tu;n H,'2 (Bl'ame;;/.o;lthy acuo?'.?tbla.’:zeworthytac-
. . . . P assertion that the game i ina state where  reach their respective destinations. e onlirates is one in which an agent vilaes is guaranees,
* Other agents can act to intentionally make safety impossible. every agent 1 st ety i e s oot i
e Can’t satisfy all road rules all the time, which to violate? assertion that agents be asigned
at the same time.
Solution: Pt. 1 Behavioral Profile Pt. 2 Conflict Resolution Scheme Proofs Simulations
. . 1. Safety: no collisions.
Propose the design of a behavioral protocol agents A > bart Y :
, . Performance: agents =
should use to select actions. s 5 e
4} 47 | ] make progress towards ;
: o o | : : '
Strategy ensures agents are always entitled to safely execute P destinations. (under I
their backup plan action (i.e. maximal braking) * L sparsity assumptions) e Bt
Broader Impact on Society Broader Impact: Education and Quantifying Broader Impact:
* Adoption of this type of framework will lead to Outreach * Potential to design autonomous vehicle algorithms that
safer and more interpretable autonomous vehicles . reduce number of collisions on the road.
Surveyed Students. Faculty: **;izr:rsi mt:rray. Yisong Yue, Adam . . .
on the road.. A S —  Also could help inform design of autonomous vehicle road
e Serves as a novel framework for designing vehicle pesigned hese Resarces o wmg G S rules and regulations.
behavior with the collective in mind (instead of the
individual). Designed and hosted workshop on ‘Building Effective

Research Collaborations’ to teach grad students
communication and conflict prevention/management
skills. Resources can be found:
http://healthycollab.caltech.edu/

* Could be integrated alongside data-driven/machine
learning approaches.

2021 NSF Cyber-Physical Systems Principal Investigators' Meeting Award ID#: CNS-1545126

June 2-4, 2021



http://healthycollab.caltech.edu/

