
2021 NSF Cyber-Physical Systems Principal Investigators' Meeting
June 2-4, 2021 

Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World

https://ieeexplore.ieee.org/document/9294368
Daniel Fremont (UC Santa Cruz), Sanjit A. Seshia (UC Berkeley)

Broader Impact:
Our methodology is directly applicable to testing self-driving 
cars at track testing facilities to identify effective test cases, 
which is crucial for a scalable testing. However, at a larger 
scope, this methodology is applicable in testing systems which 
operate in a dynamic, interactive, and multi-agent 
environment which can be modelled as scenarios.
From education perspective, the outcome of our experiment 
across simulation and reality signifies the sensor realism issue 
where autopilot may perform differently on synthetic versus 
real sensor data.  
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We present a formal scenario-based testing methodology on the safety of autonomous vehicles, especially those using advanced artificial intelligence-based components, spanning both simulation-
based evaluation as well as testing in the real world. Our approach is based on formal methods, combining formal specification of scenarios and safety properties, algorithmic test case generation using 
formal simulation, test case selection for track testing, executing test cases on the track, and analyzing the resulting data. Experiments with a real autonomous vehicle at an industrial testing facility 
support our hypotheses that (i) formal simulation can be effective at identifying test cases to run on the track, and (ii) the gap between simulated and real worlds can be systematically evaluated and 
bridged.
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Scenic 
Program

Unsafe Tests in Simulation → Unsafe in Real World: 62.5%

Safe in Simulation → Safe in Real World: 95%
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What Can Simulation Teach Us About Grasping 3D Deformable Objects?

Isabella Huang, Ruzena Bajcsy, in collaboration with NVIDIA
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Grasping deformable objects is underexplored in robotics, and 
can even be unintuitive for humans. We seek to build intuition 
for deformable grasping through simulation of ~4600 grasps

(A) For a broad set of candidate grasps on a deformable objects, 
(B) We simulate the object’s response with FEM, 
(C) Measure 7 performance metrics (e.g., stress, controllability), and
(D) Identify 7 pre-pickup grasp features (e.g. squeezing distance, gripper 
distance to object center of mass) that are correlated with the metrics. 

Motivation Contributions

Some features are found to be strongly correlated to some metrics. We 
then use these correlations to predict the metrics on unseen objects.

Prediction on Unseen Objects

We demonstrate good 
predictions for the most 
extreme grasps for stress 
on a heart (top) as well as 
the most extreme grasps 

for deformation on a 
hollow bottle (bottom)

How would you grasp each of these deformable objects? Deformation should be 
minimized on the cup to avoid dislodging its contents. Stresses should be 

minimized on the tofu to prevent breakage. On the teddy bear, any grasp works.

Sim-to-Real Validation

Simulation corresponds very well to 
the real world, e.g., 3 grasps on tofu 
(left) and a hollow latex tube (right) 
without parameter tuning.
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DEC-LOS-RRT:	Decentralized	Path	Planning	for	Multi-robot	Systems	with	Line-of-sight	
Constrained	Communication	[To	Appear	in	CCTA	2021]

https://vehical.org
Victoria	Tuck,	Yash Vardhan Pant,	PIs:	Sanjit Seshia,	S.	Shankar	Sastry

Broader	Impact: In	large	CPS	fleets,	a	centralized	solution	to	the	communication	constrained	setting	will	likely	not	scale,	necessitating	a	decentralized	solution	
that	can	be	trusted	in	safety-critical	societal	systems.	

A	decentralized	algorithm	that	given	line-of-sight	communication	between	
agents	(including	via	multi-hop),	has	agents
• reach	their	goal	position	from	a	valid	starting	position
• avoid	static	obstacles	in	a	known	space
• maintain	a	desired	distance	from	other	agents

CPS	Applications:	Low-power	communication	links	that	cannot	be	established	through	solid	obstacles	may	necessitate	an	algorithm	that	accounts	for	the	
possibility	of	an	impending	crash	with	an	agent	that	is	close	but	not	yet	seen.	Additionally,	such	an	algorithm	would	assist	autonomous	vehicles	in	avoiding	
situations	where	a	hidden	pedestrian	moves	into	a	position	that	the	vehicle	cannot	avoid.

Outreach	Participation	by	Authors: Bay	Area	Scientists	in	Schools,	Girls	in	Engineering,	Be	A	Scientist	

Award	ID#:1545126	

Algorithm	assumes	valid	starting	positions,	instantaneous	stop,	lossless	
communication	with	no	latency,	and	single	integrator	dynamics.
1. Start	base	RRT-based,	safe,	decentralized	algorithm	for	each	subgraph
2. Update	agent	waypoints	per	base	decentralized	algorithm
3. Stop	movement	when	subgraph	changes	(e.g.,	a	new	agent	is	seen)
4. Restart	base	decentralized	algorithm	for	new	subgraph	of	agents
5. Repeat	2-5	until	all	agents	reach	their	goal	or	a	lock	is	reached
The	algorithm	introduces	the	use	of	delta	obstacles.	In	the	right	figure,	
green,	solid	boxes	are	obstacles,	and	blue,	dashed	boxes	are	delta	obstacles.	
Avoiding	delta	obstacles	with	use	of	instantaneous	stop	ensures	safety.
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Future	Directions:	Assumptions	such	as	instantaneous	stop	and	single	integrator	dynamics	limit	applicability.	In	future	iterations	of	this	project, we	will	approach	
a	similar	problem	for	differentially	flat	systems	with	more	realistic	communication	and	jerk	models.

Project	Goal
Agents	can	only	communicate	
with	agents	in	their	subgraph.	A	
subgraph	is	defined	by	an	agent’s	
visible	neighbors	and	any	agent	
in	a	visible	neighbor’s	subgraph.
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DEC-LOS-RRT	Algorithm

11	agents	run	the	DEC-LOS-RRT	
Algorithm.	Safety	is	assured.	
Although	it	is	not	guaranteed	

that	agents	will	reach	their	final	
positions,	most	runs	resulted	in	

goal	attainment.
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Model-based Formalization of the Autonomy-to-Human Perception Hand-off

https://vehical.org/

Yash V. Pant, Balasaravanan T. Kumaravel , Ameesh Shah, Erin Kraemer, Marcell Vazquez-Chanlatte, Kshitij Kulkarni, 

Bjoern Hartmann, Sanjit A. Seshia

Challenge problems:

1. How does attention impact human decision-making 
in safety and time-critical situations? 

2. How does attention evolve over time?

3. How can attention be estimated and influenced via 
active information gathering (AIG)?

Scientific impact:

Human-aware Model-based design for the Operator-
Autonomy interface.  

Motivation: Autonomous vehicles (AVs) are far from achieving `Full-Self Driving’ and need to bring the driver into the decision-making loop in safety-critical situations. This 
however ensures safety only when the human is attentive and makes a correctly and timely decision. We focus on the perception hand-off, where an AV’s perception module 
requires human supervision to interpret the environment.  We formalize this Human-Robot Interaction (HRI) to develop an approach for modeling and influencing human 
attention, even in the presence of a non-driving related task (NDRT), for timely and correct decision making in perception hand-offs. 

Award ID#: CNS-1545126

Perception hand-off: The AV 
queries the human driver when its 
perception module requires help in 
decision making, or to influence the 
human’s state of attention. Further 
influencing the state is a NDRT.

Web-based human study (40 participants):

❑ Query-based AIG mechanism

❑ Dual-task: Driving related (primary) and 
simple arithmetic (distractor, or NDRT). 

Key insights:

❑ Presence of NDRT degrades human 
response (slower and incorrect).

❑ AIG actions can improve human response 
times (≅ 7%) in the presence of NDRT. 

Dual-task experiment: The human identifies 
objects, while also solving arithmetic problems. 

Methodology: Model-based perception hand-off

❑ Partially Observable Markov Decision Process (POMDP) 
model with novel structure.

❑ Hidden states are attention levels (𝑙1 ≺ 𝑙2 ≺ ⋯ ≺ 𝑙𝑁)

❑ Actions are queries from the perception module or 
active information gathering actions

❑ Observations are human responses over time

❑ Learn parameters from human study data

❑ Compute policy for AIG actions

Simplified POMDP state-space: Blue 
arrows show transitions of 
attention in absence of queries. 
Red and green arrows show 
transitions when queries are active. 
Two attention levels for simplicity. 

Simulation study with learnt POMDP model as a surrogate for the human

Simulation results: Optimal `Learned’ policy for a reward 
(R) that incentivizes correct and fast responses from the 
human, verses baseline methods. 
▪ The fraction of perception hand-offs correctly 

responded to (f) is highest for this policy. 
▪ It also uses fewer AIG queries per each perception 

hand-off query (#𝑎 𝐴𝐼𝐺𝐴 : #𝑎 𝑃𝐸𝑅 ) than other non-
trivial baselines.

Observation probabilities: Learnt probabilities of 
correct response vs time steps into query, when 
latent state is attentive (blue) and inattentive (red). 

Insight: Higher probability of 
correct (and early) response 
when human is attentive. 

Conclusion and ongoing work

❑ Model-based formulation allows for estimating and 
influencing human attention for safer perception hand-offs.

❑ Immersive human study in development to overcome 
limitations of current setup, and to add richer signals to 
improve modeling. 

Potential broader impact 
(societal):

❑ Improved safety of autonomous 
and semi-autonomous vehicles.

❑ Principled operator-autonomy 
interaction beyond AVs. 

Uber crash in Arizona, 2019. 
Image from NTSB report. 

Education and Outreach:

Researchers from the project served as 
mentors in the UC Berkeley Girls in 
Engineering program, serving as technical 
experts. They also discussed their research 
with the school-going participants. 



Speci�cations from demonstrations; A Maximum Entropy Approach
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What was the agent trying to do?

Q: Did the agent intend to touch the red tile?

Problem Statement

Given unlabeled demonstrations, learn a formal
speci�cation that "explains" the teachers behavior.

Why not Rewards?

Contributions

1. Robustly learn trace properties from unlabeled
demonstrations in Markov Decision Processes.

2. Symbolic approach for e�cently representing Markov Decision
Processes as Binary Decision Diagrams.

Symbolic Maximum Causal Entropy Likelihood Estimatation

Key Observation: Can think of soft constraint as binary reward.

By adding history to state space, can reduce to Maximum Causal
Entropy Inverse Reinforcement Learning.
Problem: Potential combinatorial explosion.
Solution: Encode MDP as a Binary Decision Diagram.

1. Write the composition of the dynamics and property as a
circuit with access to biased coins.

Dynamics

Action Bits

Coin flips

Dynamics

Action Bits

Coin flips

Specification
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2. Idea: Symbolically encode MDP as a Binary Decision Diagram:
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Conservative size bound:

3. We show you can e�ciently compute maximum causal
entropy policy on compressed MDP.

Application: Used to learn temporal logic constraint from unlabeled
demonstrations, e.g.,

φ = "Avoid Lava, eventually recharge, and don't recharge while wet."

Experiment: Learn rules given 6 unlabeled demos.

Dynamics
Actions = {↑, ↓, ←, →}.

Probability  to slip and move ←.

Rules

1. Go to and stay at the yellow tile.
2. Avoid red tiles.
3. If you enter a blue, touch a brown

tile before recharging.

Spec Policy Size ROBDD
Relative Log
Likelihood

(#nodes) build time (Compared to True)
true 1 0.48s 0
φ1 = rule 1 1628 1.2s 5
φ2 = rule 2 1797 1.5s -22
φ3 = rule 3 750 1.6s -10
φ4 = φ1 ∧ φ2 523 1.9s 4
φ5 = φ1 ∧ φ3 1913 1.5s -2
φ6 = φ2 ∧ φ3 1842 2s 15
φ⋆ = φ1 ∧ φ2 ∧ φ3 577 1.6 27

Key observation:  more likely than consistent speci�cations.

Future Work

1. Teaching through demonstrations.
2. Inference in continuous domains.
3. Data driven concept classes - Natural Language Processing,

Sampling consistent automata, etc.
4. Estimating Membership Queries: Is a given behavior is ok?

r (ξ) ≜λ λ ⋅ 1[ξ ∈ φ]

O(∣horizon∣ ⋅ ∣S/φ∣ ⋅ ∣Actions∣ log(∣Actions∣))

32
1

φ∗



2021 NSF Cyber-Physical Systems Principal Investigators' Meeting
June 2-4, 2021 

Rules of the Road: Formal Guarantees for Autonomous Vehicles with Behavioral Contract 
Design
Karena X. Cai*, Tung Phan-Minh*, PIs: Richard M. Murray, Soon-Jo Chung, California Institute of Technology

Broader Impact on Society

Challenge: 
How do we design a high-level decision making strategy for 
autonomous agents in highly-interactive environments to 
behave ‘correctly’, i.e. be safe, be lawful, and make progress 
towards its destination?

Extremely challenging because:  
• Robot-freezing problem and unbounded rationality.
• Joint action space grows exponentially.
• Other agents can act to intentionally make safety impossible. 
• Can’t satisfy all road rules all the time, which to violate? 

Scientific Impact: 

Broader Impact: Education and 
Outreach

Quantifying Broader Impact: 

Award ID#: CNS-1545126  

Solution:
Propose the design of a behavioral protocol agents 
should use to select actions. 
Strategy ensures agents are always entitled to safely execute 
their backup plan action (i.e. maximal braking)

Safety guarantee Scalability & Interpretability Notion of Blame/Liability
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https://vehical.org

Pt. 2 Conflict Resolution SchemePt. 1 Behavioral Profile
1. Safety: no collisions.
2. Performance: agents 
make progress towards 
destinations. (under 
sparsity assumptions) Ct

Simulations

Abstract: 
The ability to make formal guarantees on safety and performance for autonomous vehicles in highly-interactive, dense environments largely remains unsolved. With a well-defined behavioral contract, we can 
not only provide formal guarantees on agent safety and progress, but we also have a mechanism for assigning blame when accidents invariably occur. In this paper, we define a behavioral contract for a particular 
class of agents on a road network environment in a quasi-simultaneous discrete-time game. We provide proofs of correctness of the behavioral contract and validate our results in simulation.

• Adoption of this type of framework will lead to 
safer and more interpretable autonomous vehicles 
on the road..

• Serves as a novel framework for designing vehicle 
behavior with the collective in mind (instead of the 
individual).

• Could be integrated alongside data-driven/machine 
learning approaches. 

• Potential to design autonomous vehicle algorithms that 
reduce number of collisions on the road. 

• Also could help inform design of autonomous vehicle road 
rules and regulations. 

Proofs

Agent strategy (defined in a discrete-game and in specific road network environments that provides: 

Designed and hosted workshop on ‘Building Effective 
Research Collaborations’ to teach grad students 
communication and conflict prevention/management 
skills.  Resources can be found:  
http://healthycollab.caltech.edu/

Given that all agents in the quasi-
simultaneous game select actions in 
accordance to the agent protocol defined, 
we can show the safety property:

Safety Theorem

assertion that the game is in a state where 
every agent has a backup plan action that is 
safe.

assertion that agents never occupy the 
same grid point at the same time.

Performance guarantee

Liveness Theorem
Given the sparsity conditions hold, and 
that all agents in the quasi-
simultaneous game select actions in 
accordance to the agent protocol defined, 
we can show all agents will eventually 
reach their respective destinations.

http://healthycollab.caltech.edu/

