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Cognitive Autonomy for Human CPS

State of the art
• Users are responsible for becoming skilled through 

specialized training
• System behavior does not adapt to human cognitive 

workload, attention, trust, or priorities

How can we design human CPS to be 
highly responsive to the human, yet 

amenable to formal guarantees?

Human 
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Computational Physical

Human



Vision
Develop scientific and engineering principles so 
that cognitive autonomous systems can:
• Estimate workload, skill level, trust in real 

time
• Learn individual priorities and preferences
• Infer potential blind spots
• Anticipate and prevent “bad” behaviors
• Provide reasoned guidance post-hoc, and 

multi-modal communication in run-time
• Enable safe, effective, and reliable 

performance for any human skill level
• Hasten the learning curve 
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Human cognitive state dynamics are required for effective 
control of human CPS.



Cognitive Autonomy for Human CPS

• Control theory
• Autonomous systems
• Human factors
• Human-centered design
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Potential Impacts and Key Outcomes
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Thrust 2
Predictive monitoring & verification

Algorithms to assure correctness properties 
through a combination of offline 
verification and online predictive 
monitoring

Thrust 4
Transparent communication

Algorithms and devices for constructive, 
explanatory reasoning that make 
automation action and intent transparent 
to the human

Thrust 1
Computable cognitive models

Computationally tractable, experimentally 
driven models, that enable real-time 
characterization of individual human state, 
actions, and priorities

Thrust 3
Cognitive control

Individually customized controllers, 
responsive to the state of the human and 
the autonomous system, that assure 
safety, reliability, and performance
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Potential Impacts and Key Outcomes

• Integration of data-driven and model-based methods is 
important for capturing the breadth and complexity of 
naturalistic human action
• Risk fields for predictive models of probabilistic human action in 

an advanced driving simulator
• Conditional distribution embeddings characterize relative impact 

of tactile alerts in a collision avoidance maneuver.

• Carefully designed human subject experiments are 
required for design and validation
• Conditional distribution embeddings for dynamics-aware, 

stochastic optimal control

Fig. 3. (Top Row) Sample (x, y) trajectories generated by the risk model against ground truth shown by red stars with centerline shown as a dashed
black line and obstacle shown as red circle. Warning: x and y axes are drawn to different scales. (Bottom Row) Corresponding velocity (m/s) values over
time against ground truth.

Fig. 4. Simulated trajectories using extreme low (5th percentile) and high values (95th percentile) for the parameters. From left to right, top to bottom;
(a) parameter A: center line deviation risk weightage; (b) parameter B: obstacle avoidance risk weightage; (c) parameter D: cost for acceleration; (d)
parameter E: cost for turning rate control.

We have also demonstrated our approach on actual human
driving data from a medium-fidelity simulation environment
showing that our models can accurately predict future posi-
tions and generate qualitatively different driving behaviors.

In particular, we show that deviation of generated trajectories
from the human trajectory remains relatively stable over time
periods up to 20 seconds into the future.

The main area for improvement is that our model currently

Fig. 2. (Left) Picture of the NADS miniSim setup showing a participant driving along a course (daytime simulation), (Right) plot of the centerline of the
simulated course showing obstacle placement as red circles.

A. Task Description

The driving task is performed in a medium-fidelity driving
simulation environment developed by the National Advanced
Driving Simulator (NADS miniSim) at Purdue Univer-
sity [22]. The system includes three high resolution monitors
for displaying the driving environment and a smaller monitor
for the vehicle dashboard display. The user controls a steering
wheel and foot pedals for acceleration and braking as in a
standard automobile (Figure 2, left).

Driving Scenario. The driving scenario consists of driving
the simulated vehicle at night time on a two lane city high-
way with four obstacles placed along the route. Illumination
using street lights was present. The overall simulated driving
course distance was roughly 4.8 km (3 miles). To increase
the difficulty of the task, participants were asked to drive
one handed with their non dominant hand. There were no
oncoming, leading, or trailing vehicles. The obstacles were
placed so that they were visible only after the participant
rounded the curve (Figure 2, right).

The objectives for the human driver are as follows:
1) The operator must practice safe driving by keeping

within their lane and minimizing deviations. They must
never exit the paved road.

2) Obstacles (a tire) placed in the operator’s lane are to be
avoided.

3) Vehicle speed is to be maintained as close as possible
to 45 mph (⇡ 20 m/s) at all times.

Participants. The study was conducted with six partici-
pants (3 male, 3 female) with a mean age of 21.33 years
(SD = 0.82). Participants were all undergraduate students
at Purdue University 1, and were all engineering senior
undergraduate students. On average, the participants had
4.2 years of driving experience, with all of them reporting
having driven 10K or more miles per year, on average. The
participants were allowed to practice driving the vehicle on
the simulator using a daytime practice course that involved
an open highway.

1This study was approved by Purdue IRB number 1905022220

Data Collection. Each participant drove the course over
three (or in one case, four) separate trials, yielding nineteen
separate trials for the six participants, in total. Data collected
includes the position, velocity, heading angle, steering wheel
position, accelerator/brake pedal positions sampled at 60 Hz.

B. Risk Field Formulation

We will now derive risk models for the human driving
task. First, we will describe a simple unicycle model for the
vehicle’s dynamics. This model is appropriate since effects
such as cornering over tight turns, wheel slip and skids are
not important for the speed and road conditions that were
simulated in the study. The state of the vehicle is described
by x : (x, y, v, ), wherein x, y denote the position in a
fixed coordinate frame, v describes the velocity of the vehicle
and  is the heading angle. The control inputs are u1: the
acceleration (or deceleration) and u2: the turning rate. The
dynamics are described by the ODEs:

ẋ = v cos( ) ẏ = v sin( )
v̇ = u1  ̇ = u2

�
(2)

We define the function ptLineDistance((x, y), C) as the
Euclidean distance from a given position (x, y) to the nearest
point in the center-line C.

Similarly, we are given a list of obstacle positions
O : [(xo,1, yo,1), · · · (xo,4, yo,4)]. Each obstacle has a
fixed diameter do = 0.3 meters. We define the function
obstacleDistance((x, y), O) as the Euclidean distance from a
given position (x, y) to the obstacle that will be encountered
next in the vehicle’s direction of travel.

The overall risk for a given state x : (x, y, v, ) and
control u is given by risk(x):

risk(x) :

8
><

>:

A · ptLineDistance((x, y), C)2+

B · exp
⇣
� obstacleDistance((x,y),O)2

d2
o

⌘
+

C · (v � vtgt)2
. (3)

and the cost of the control input is given by cost(u):

cost(u) : D · u2
1 + E · u2

2 . (4)
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Potential Impacts and Key Outcomes

• Exploiting psychophysiological sensing for 
feedback can dramatically impact 
performance
• Stochastic IRL for shared controller synthesis 

under human learning

• Cognitive state feedback (via trust and self-
confidence) can accelerate human learning
• Calibration of self-confidence enables pilot 

performance and accelerates improvements in 
task performance.



SIRI: Summer Intensive Research Institute
Culturally responsive undergraduate research program
• Collaboration between UNM and Purdue
• Goals
– Encourage underrepresented students to pursue CPS
– Develop professional competencies 
– Provide opportunities for students to connect their research experience with their 

cultural background
• Research to characterize transitions to belonging
•
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Engineering Student Success



Challenges and Strategies

• Disciplinary boundaries and conceptual differences
– Presumed knowledge (jargon) and concepts
– Cross-cutting sub-groups within the project

• Experiment design for prediction and control
– Creating sufficiently rich environments
– Generalizability of experiments



Opportunities and Rewards

• Time and space to work with depth on meaningful problems 
• Establish new collaborations, cement existing ones
• Student opportunities 
– Student exchange
– Internships

• Larger impact
• Broadening participation and creating pipelines
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