
A Secure, Trustworthy, and Reliable Air Quality Monitoring System with Low-cost Sensors for Smart and Connected Communities Haofei Yu¹; Xinwen Fu^{2,1}; Deliang Fan³; Kelly Stevens¹; Thomas Bryer¹ ¹University of Central Florida; ²University of Massachusetts Lowell; ³Arizona State University

Project URL: https://cece.ucf.edu/AirQualityProject/

Introduction

lesign σ Ο Hardwar Τ Fig

Society

- Help reduce exposures of sensitive population
- Provide key resources for local regulators to design mitigation plans on air pollution
- Assist with tracking the effectiveness of the City's current sustainability practices
- Educate public on the City's sustainability effective

2021 NSF Cyber-Physical Systems Principal Investigators' Meeting June 2-4, 2021

Public administrators and researchers need to incorporate evidence and data into environmental decision-making We are establishing a secure, trustworthy and reliable air quality monitoring network in Orlando to better inform air pollution management strategies

Key Challenges

- Sensing quality. Unpredictable performance of low-cost sensors
- *IoT security*. Cyber security rarely considered
- **Data quality.** Noisy, mixed-labelled, or even compromised data •
- **Citizen efficacy & trust in governance.** Disadvantaged citizens are often impacted the most by air pollution, but often feel neglected

Technical Approach and Intellectual Merits

Sensing quality

- Air quality models + multi-sensor system for remote sensor calibration, drift correction and malfunction detection.
- IoT security
 - Trustworthy monitoring devices based on Arm TrustZone

Broader Impact

	Education & Outreach
on	 Incorporated outcomes into courses across multiple disciplines
	 Provide research & educational opportunities for college and K-12 students
	Train cybersecurity workforce for critical cyber
forts	infrastructures and environment
Monting	

Scientific Impact

- Generalizable approach for improving sensing quality of low-cost sensor
- Secured environmental IoT
- Sensor big data & machine learning based environmental prediction
- Further understanding and improve governance
- **Data quality.** Air quality prediction model based on a two-stage semi-supervised deep learning framework over noisy data
- Citizen efficacy & trust in governance. A fourstage data accessibility framework to measure inclusion and trust of local government

Assessment

- Increased participation of women and URMs in computing related majors and existing computing related K-12 outreach programs
- Recruitment of women and URM undergraduate \bullet students in this research project.