
Problem:
§ Jobs generated at various servers, destined for other servers
§Route jobs to minimize total response time
§The network is assumed to be sufficiently well connected
§We are interested in a mean-field regime in which the number

of servers goes to infinity
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Project Outcome and Impacts

Maximum Entropy Feedback for DR

Our algorithms lead to data center demand response products that are made based on the 
workload management algorithms that balance quality of service and energy efficiency and 
determine the supply functions. The workload management algorithms optimize quality of 
service under the electric load constraints imposed by demand response.  Three unique 
contributions are outlined below:
1) new market programs with strategic participation of data centers in DR
2) fundamental understanding of the impacts of power network constraints on data center DR 
3) high-performance dynamic server provisioning and load balancing algorithms for large 
scale data centers under time-varying and stochastic electric load constraints and on-site 
renewable generation.
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Award "2019 IEEE Koji Kobayashi Computers 
and Communications Award” 
(https://en.wikipedia.org/wiki/IEEE_Koji_Kobayas
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•Technology transfer via startup activities:
• Smartiply Inc (https://www.smartiply.com/): 
founded by Junshan Zhang
• Powerflex Inc (https://www.powerflex.com/):  
founded by Steven Low

Resource Allocation in Data Centers
Øgoes to infinity? How does the topology of the data center network impact the delay performance? 

Massive numbers of servers, 1000s to millions
ØTraditional problem: Many choices, how to select a small number for load-balancing purposes?
Ø In practice, the number of choices is limited
ØKey Questions: What resource allocation algorithms are asymptotically delay optimal in the limit 

as the size of the data centers

Motivation
• DERs provide flexibility to a power system operator (SO)
• … to help the SO achieve her objectives
• … while respecting their own private constraints.
• The SO and aggregators thus form a closed-loop system to 

optimize grid objectives subject to DERs’ private constraints.
• What to feed back from aggregator to operator that describes 

DERs’ aggregate flexibility yet protecting privacy?

Algorithm
• Join the fastest of the shortest queues (JFSQ)

•Route a job to the shortest queue, but if there is a tie, choose the fastest 
among them

•Important fact: No need to know the exact service rates of various servers, 
relative service rates are sufficient, i.e., only need to know which among a 
set of servers is fastest, the actual processing rate of each server is not used
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for discrete U. It quantifies future flexibility that will be
enabled by an operator action ut . The feedback pt therefore
is a surrogate for the aggregator constraints (2b) to guide the
operator’s decision. Let u := (u1, . . . ,uT ). Specifically, define
the set of all feasible action trajectories for the aggregator as:

S :=
�

u 2 UT : u satisfies (2b)� (2d)
 
.

The following property of the set S is useful, whose proof
can found in Appendix A.

Lemma 1. The set of feasible action trajectories S is Borel
measurable.

Existing aggregate flexibility definitions focus on approx-
imating S such as finding its convex approximation (see
Section I-B for more details). Our problem formulation needs a
real-time approximation of this set S, i.e., decompose S along
the time axis t = 1, . . . ,T . Throughout, we assume that S is
non-empty. Next, we define the space of flexibility feedback
pt . Formally, we let P denote a set of density functions
pt(·) : U! [0,1] that maps an action to a value in [0,1] and
satisfies

Z

u2U
p(u)du = 1.

Fix xt at time t 2 [T ]. The aggregator function yt(·) : X!P
at each time t outputs:

yt(xt) = pt(·|u<t) (6)

such that pt(·|u<t) :U! [0,1] is a conditional density function
in P. We refer to pt as flexibility feedback sent at time t 2 [T ]
from the aggregator to the system operator. In this sense, (6)
does not specify a specific aggregator function yt , but a class
of possible functions yt . Every function in this collection is
causal in that it depends only on information available to the
aggregator at time t. In contrast to most aggregate flexibility
notions in the literature [3], [4], [5], [6], [7], [8], [9], [10], the
flexibility feedback here is specifically designed for an online
feedback control setting.

B. Maximum entropy feedback

The intuition behind our proposal is using the conditional
probability pt(ut |u<t) to measure the resulting future flexibility
of the aggregator if the system operator chooses ut as the signal
at time t, given the action trajectory up to time t�1. The sum
of the conditional entropy of pt thus is a measure of how
informative the overall feedback is. This suggests choosing
a conditional distribution pt that maximizes its conditional
entropy. Consider the optimization problem:

z := max
p1,...,pT

T

Â
t=1

(Ut |U<t) subject to U 2 S (7a)

where the variables are conditional density functions:

pt := pt(·|·) := Ut |U<t (·|·), t 2 [T ], (7b)

U 2 U is a random variable distributed according to the
joint distribution ’T

t=1 pt and (Ut |U<t) is the differential
conditional entropy of pt defined as:

(Ut |U<t) :=
Z

ut2Ut

⇣
�

t

’̀
=1

p`(u`|u<`)
⌘

log pt(ut |u<t)dut . (7c)

By definition, a quantity conditioned on “u<1” means an un-
conditional quantity, so in the above, (U1|U<1) := (U1) :=
(p1).
The chain rule shows that ÂT

t=1 (Ut |U<t) = (U). Hence
(7) can be interpreted as maximizing the entropy (U) of
a random trajectory U sampled according to the joint distri-
bution ’T

t=1 pt , conditioned on U satisfying U 2 S, where the
maximization is over the collection of conditional distributions
(p1, . . . , pT ).

Definition III.1 (Maximum entropy feedback). The flexibility
feedback p⇤t = y⇤

t (u<t) for t 2 [T ] is called the maximum
entropy feedback (MEF) if (p⇤1, . . . , p⇤T ) is the unique optimal
solution of (7).

Remark 3. Even though the optimization problem (7) involves
variables pt for the entire time horizon [T ], the individual
variables pt in (7c) are conditional probabilities that depend
only on information available to the aggregator at times t.
Therefore the maximum entropy feedback p⇤t in Definition III.1
is indeed causal and in the class of p⇤t defined in (6). The
existence of p⇤t is guaranteed by Lemma 2 below, which also
implies that p⇤t is unique.

We demonstrate Definition III.1 using a toy example.

Example III.1 (Maximum entropy feedback p⇤). Consider the
following instance of the EV charging example in Section II-E.
Suppose the number of charging time slots is T = 3 and there is
one customer, whose private vector is (1,3,1,1) and possible
energy levels are 0 (kWh) and 1 (kWh), i.e., U⌘ {0,1}. Since
there is only one EV, the scheduling algorithm u (disaggre-
gation policy) assigns all power to this single EV. For this
particular choices of x and u, the set of feasible trajectories
is S= {(0,0,1),(0,1,0),(1,0,0)}, shown in Figure 2 with the
corresponding optimal conditional distributions given by (7).

Fig. 2. Feasible trajectories of power signals and the computed maximum
entropy feedback in Example III.1.

C. Properties of p⇤t
We now show that the proposed maximum entropy feedback

p⇤t has several desirable properties. We start by computing p⇤t
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V. PENALIZED PREDICTIVE CONTROL

Consider the system model in Section II. In this setting, the
operator seeks to minimize the cost in an online manner, i.e., at
time t 2 [T ] the operator only knows the objective functions
c1, . . . ,ct and the flexibility feedback p1, . . . , pt . The task of
the operator is to, given the maximum entropy feedback,
design a sequence of operator functions f1, . . . ,fT to generate
actions u1, . . . ,uT that are always feasible with respect to the
constraints and that minimize the cumulative cost.

A. Key Idea: Maximum entropy feedback as a penalty term
There is in general a trade-off between ensuring future

flexibility and minimizing the current system cost in predic-
tive control. The action ut guaranteeing the maximal future
flexibility, i.e., having the largest p⇤t (ut |u<t) may not be the
one that minimizes the current cost function ct and vice versa.
Therefore, the online algorithm for the central controller must
balance future flexibility and current cost. The key idea is to
use MEF as a penalty term in the offline optimization problem.
Note that Corollary III.1 guarantees that the online agent can
always find a feasible action u 2 S. Indeed, knowing the MEF
p⇤t for every t 2 [T ] is equivalent to knowing the set of all
admissible sequences of actions S. To see this, consider the
unique maximum entropy feedback (p⇤1, . . . , p⇤T ) guaranteed
by Lemma 2 and let q(u) = ’T

t=1 p⇤t (ut |u<t) denote the joint
distribution of the action trajectory u. Then (8) implies that
the joint distribution q is the uniform distribution over the set
S of all feasible trajectories:

q(u) :=

(
1/µ (S) if u 2 S

0 otherwise
. (12)

Using this observation, the constraints (2b)-(2d) in the of-
fline optimization can be rewritten as a penalty in the objective
of (2a). We present a useful lemma that both motivates our
online control algorithm and builds up the optimality analysis
in Section V-D.

Lemma 3. The offline optimization (2a)-(2d) is equivalent to
the following unconstrained minimization for any b > 0:

inf
u2UT

T

Â
t=1

(ct(ut)�b log p⇤t (ut |u<t)) (13)

The proof of Lemma 3 can be found in Appendix E. It
draws a clear connection between MEF and the offline optimal,
which we exploit in the design of an online system operator
in the next section.

B. Algorithm: Penalized Predictive Control via MEF
Our proposed design, termed penalized predictive control

(PPC), is a combination of model predictive control (MPC)
(c.f. [36]), which is a competitive policy for online opti-
mization with predictions, and the idea of using MEF as
a penalty term. This design makes a connection between
the MEF and the well-known MPC scheme. The MEF as a
feedback function, only contains limited information about the
dynamical system in the local controller’s side. (It contains

Data: Sequentially arrived cost functions and MEF
Result: Actions u = (u1, . . . ,uT )
for t = 1, . . . ,T do

Choose an action ut by minimizing:

ut = ft(pt) :=arg inf
ut2U

(ct(ut)�bt log pt(ut |u<t)) (14)

end

Return u;

Algorithm 2: Penalized Predictive Control (PPC).

only the feasibility information of the current and future time
slots, as explained in Section III). The PPC scheme therefore
is itself a novel contribution since it shows that, even if
only feasibility information is available, it is still possible to
incorporate the limited information to MPC as a penalty term.

We present PPC in Algorithm 2, where we use the following
notation. Let bt > 0 be a tuning parameter in predictive control
to trade-off the flexibility in the future and minimization of the
current system cost at each time t 2 [T ]. The next corollary
follows whose proof is in Appendix C.

Corollary V.1 (Feasibility of PPC). When pt = p⇤t for all
t 2 [T ], the MEF defined in Definition III.1, the sequence
of actions u = (u1, . . . ,uT ) generated by the PPC in (14)
always satisfies u 2 S for any sequence of tuning parameters
(b1, . . . ,bT ).

C. Framework: Closed-loop control between local and central
controllers

Given the PPC scheme described above, we can now
formally present our online control framework for the distant
central controller and local controller (defined in Section II).
Recall that an overview of the closed-loop control framework
has been given in Algorithm 1, where f denotes an operator
function and y is an aggregator function. To the best of our
knowledge, this paper is the first to consider such a closed-loop
control framework with limited information communicated
in real-time between two geographically separate controllers
seeking to solve an online control problem. We present the
framework below.

At each time t 2 [T ], the local controller first efficiently gen-
erates estimated MEF pt 2 P using an aggregator function yt
trained by a reinforcement learning algorithm. After receiving
the current MEF pt and cost function ct (future w MEF and
costs if predictions are available), the central controller uses
the PPC scheme in Algorithm 2 to generate an action ut 2 U
and sends it back to the local controller. The local controller
then updates its state xt 2 X to a new state xt+1 based on the
system dynamic in (1) and repeats this procedure again. In the
next Section, we use an EV charging example to verify the
efficacy of the proposed method.

D. Optimality Analysis

To end our discussion of PPC we focus on optimality. For
the ease of analysis, we assume that the action space U is the

Online algorithm

1

2

1

2

Optimality: For a well-connected system,

Derived a delay bound for finite systems

JSQ has asymptotically zero delays for homogeneous servers

JFSQ is asymptotically optimal for heterogeneous servers
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Theorem
There exist !" s.t. the 
algorithm generates controls 
#$∗, … , #(∗ that are optimal

Smart grid will evolve into world’s largest and most complex IoT
Challenges:  Supply/demand vary frequently and randomly
Solutions: I) Data center demand response (DR); II) real-time 
feedback-based optimal power flow and distributed DER-based 
frequency control; III) load balancing algorithms

I) Data center demand response:  Data centers have more market 
power and can be strategic players in energy market
• Traditional approach: passive price taking; 
• Our approach:  a bargaining approach for data center DR

II) Developed algorithms for time-varying nonconvex optimization with 
provable guarantee on tracking error and applied them to real-time 
feedback-based AC OPF problems; distributed algorithms for DER-
based frequency control of multi-area power grid with provable 
guarantee on satisfaction of operational constraints and line limits

III) Load balancing: Established a university scaling of queue-length 
distributions of large-scale data centers under a general class of load 
balancing algorithms;  provided sufficient conditions for achieving zero 
waiting for incoming jobs. 
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