
2021 NSF Cyber-Physical Systems Principal Investigators' Meeting
June 2-4, 2021

Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition
and Automated Deep Learning-Based Design Classification

Students: Sriharsha Etigowni, Sizhuang Liang, Tuan Le, Mingbo Zhang, Emilio Garcia
PIs: Saman Zonouz (Rutgers University) and Raheem Beyah (GaTech)

Automated Classification of 3D Designs.
We leverage deep learning to classify each
individual design file into previously
defined set of categories. The design files
are first translated to different formats to
increase the classification performance.

Malicious Defective Design Detection. We
leverage machine learning solutions to search
for and detect suspicious defective parts in a
given design file. Our database includes
potential defects that could impact the
structural integrity of the designs.

• Rapid growth in additive manufacturing (AM) due to accessibility, customizability and affordability makes it possible for everyone
to produce products using personal printers. Designs can be developed by consumers, if the consumers have knowledge of
mechanical design and 3D modeling or obtained from third parties.

• The whole process starting from the CAD design, design to manufacturing translation and the 3D printing of the target component
is often time-consuming requiring advanced knowledge and domain expertise that most current end-users lack.

• Lots of objects, which may be very similar or identical to what the non-technical user aims to design and print, are being produced
by the expert in industry and hence billions of proven part designs already exist.

• This research fills the gap above by developing a domain-specific search engine for 3D models. It enables to search for components
(and detect malicious defective designs) on a large repository of existing proven part designs efficiently.

Award ID#: 1932146

Broader Impact
• Our techniques can enable efficient search

capabilities by end-users to enable them
find and print their target components
without domain-specific knowledge.

• We have shown the impact of such
malicious defects in PPEs and printed
COVID masks that cannot be noticed by a
naked eye. We have also proposed the
corresponding defenses.

• PI Zonouz has worked with a female high
school student (Sruthi Suresh) throughout
regular meetings on related CPS Security
topics. She is currently admitted to Cornell
University to start in Fall 2021.

locations in a propeller, the structural integrity of the propeller was compromised - it broke during a flight
causing the drone crash.

Preliminary work. Since voids are the primary known suspicious feature, we performed preliminary
studies on detecting them automatically. Our void detection method leverages ideas from the flood fill
algorithm [8] that is widely used in image processing to change the color in a continuous region of an image
to another color. The conventional flood fill algorithm is mainly used for 2D pixels in images. In this work,
we extended the flood fill algorithm for a different domain and applied it for 3D voxels in design files.

Since an STL file describes the geometry of an object in a vector form (coordinates of triangles), it is
impossible to directly apply the flood fill algorithm. As a result, we have to first convert the STL file into a
3D array of voxels. The process of converting an STL file to a 3D array of voxels is analogous to rasterizing
a vector image to a 2D array of pixels. An STL file can be converted to a 3D array of voxels by the following
steps: i) the STL file is sliced to get a series of perimeter paths that are vector images; ii) these vector images
are then transformed to 2D arrays of pixels using the standard rasterizing technique; iii) these 2D arrays of
pixels are stacked up to form a 3D array with different layers to form voxels.

When detecting voids in an STL file, we rasterize the STL file into a 3D array of voxels. We then
apply the flood fill algorithm to fill the outside region of the model. Now we can search the whole space
for unfilled voxels. Once we found one, we apply the flood fill algorithm on that voxel to fill in the region
that is connected to the voxel. We continue the process until we are sure that all of the voxels have been
examined. The number of times that we found unfilled voxels corresponds to the number of voids in the
object. The information of the unfilled voxels is collected for later analysis to verify if the identified void(s)
is/are malicious.

File Detected voids Actual voids Detection Rate

Aerospace 6 6 100%
Automotive 3 3 100%
Engineering 2 2 100%
Handtools 4 4 100%

Table 1: Malicious feature detection using flood fill on attacked STL
files.

As of now, it is hard to find STL files with
voids in the wild. In order to test the accu-
racy of the aforementioned void detection al-
gorithm, we randomly selected twenty STL
files from four different categories (from Thin-
giverse repository) and implemented void at-
tacks [7] against some of the STL files. By at-
tacking, we inserted spherical and cubic voids
with various sizes into the STL files (Figure 4 shows a sample - the voids are highlighted by red rectangular
boxes). Table 1 shows the results of the aforementioned algorithm to detect voids. The proposed algorithm
detected the number of inserted voids in all of the manually attacked STL files accurately.

Database of
Signatures of

Suspicious
Features

Signature of
Suspicious Cubic

Voids

Signature of
Suspicious

Spherical Voids

Object to be
Exmained

Voxels of the Object HOG Features of
the Object

Score Map for All
Layers

Score Map for All
Layers

Fetch

Voxelize Extract
Features

Convolve

Convolve

+

Figure 5: Overview of the signature based suspicious feature detection module.

Proposed work. The afore-
mentioned algorithm can only
detect voids in design files.
This is because the algo-
rithm leverages the topolog-
ical characteristics of voids.
However, voids are only one
type of suspicious features. In
order to expand the capability
of TIV to detect generic types
of malicious features (such as
holes, cracks, and asymmetric
blades), we propose a signa-
ture based suspicious feature
detection module. This mod-
ule aims to detect suspicious
features in a 3D model using the signatures of known suspicious features (Figure 5).

The database contains the signatures of known suspicious features. The signature of a geometric shape

5

Object Classification For each design file, its object category is required to determine the appropriate
set of boundary conditions for the FEA analysis. We will deep learning-based techniques to classify all the
design files into different object categories and specify generalized but category-specific boundaries for each
particular object category. As a preliminary study, we created a database of design files from the combination
of the modelnet database [61] with well annotated labels and the design files downloaded from Thingiverse
repository [54] with no annotation labels. The database consists of 298,056 design files from 44 categories.
237,864 files were used for training the neural network and 60,192 were used for testing (Figure 12). The
design files from modelnet were in object file format, hence for uniformity of the design file format, the STL
files from Thingiverse were converted into the object file format while building the database.

Figure 12: Confusion matrix for classification of the objects into 44 different categories. 1 indicates all
of the objects are classified correctly and 0 indicates none of them are classified correctly. Diagonal 1’s
indicates that most of the objects were classified correctly.

In the field of
computer vision,
convolutional
neural networks
(CNN) are often
used to classify 2D
images. However
this method cannot
be directly used
for design files be-
cause of there 3D
shape and irregular
triangle meshes.
We propose to
convert the 3D de-
sign files into more
appropriate format
to use traditional
convolutional neu-
ral networks. We
propose to convert
the 3D design
files to octree [35]
structure and use
the structure as the inputs to the CNN. An octree is a tree data structure most often used to partition a
three-dimensional space by recursively subdividing it into eight octants. Octrees are popularly used in 3D
graphics and 3D game engines for rendering, modeling and collision detection. We propose to generate
sparse octree occupied by the boundary surface of the 3D shapes.

Since the design files have irregular triangular meshes such as flipped normals, non-manifolds and over-
lapped triangles, we converted them into point cloud that consists of just points. We use the ray shooting
algorithm [4] to sample dense points from the 3D shapes. We then divide this dense point cloud into a unit
3D bounding cube and recursively subdivide the bounding cube of 3D shape until the required octree depth
is reached. We traverse all the non-empty octants occupied by the 3D shape bounding cube in the current
depth and subdivide them into eight child octants for the next depth. We use this octree data structure as
input for the CNN to classify the 3D design into appropriate category. We used the octree data structure as
input for the CNN (O-CNN) [59]. Figure 12 shows confusion matrix; the classifier can accurately predict
most of the category of the objects (92% on average).

We propose to create a more extensive database such that any design file can be classified into its cate-
gory. Generalized but specific to the category boundary conditions can be used for finite element analysis to
determine whether the features are due to the design or due to an attack. To create such a massive classifier,
we propose to scrape the internet for as many as possible STL files. We propose to label them and retrain
our model to include different categories as they are added to the database. Hence, the model can be updated
for any further any categories that might be on the internet.

10

