Planning and Control of Artificial Lower Limbs for Resilient Locomotion
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Control of artificial limbs will need to break away
from predefined motions

Today, even normal locomotion is difficult to master for people
who depend on prostheses or exoskeletons for mobility and
rehabilitation, and there is a clear understanding in the wearable
robotics community that a break away from predefined motions
will be required to overcome this limitation.21

Embracing this view, our project pursues a cyber-physical
approach, in which the artificial [imb takes advantage of rich
sensory information to continuously reason about and adapt its
behavior to both the user and the environment with the goal of
improving mobility with artificial lower limbs (Fig. 1).

Project explores algorithms and hardware for
continually interactive control of artificial legs

The specific objectives of the project are to

(1) establish user and environment interactive control of artificial
lower limbs,

(2) develop multi-sensory and highly dynamic prototype
exoskeletons and prostheses that enable its sensor-rich and
data-intensive implementation, and

(3) evaluate the resulting controller performance in human
subject experiments.

Currently in early stage, focusing on objectives 1 and 2.

Reasoning about environment combines leg SLAM
with model of future leg motion

For building knowledge about the environment, we investigate
ways to perform SLAM with depth-cameras attached to lower
limb (Fig. 2-a). Challenges to stable point cloud registration
include fast limb motion, high landing impacts, and ill-defined
objects temporarily in the field of view.
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Figure 1. Overview of approach.

For using this knowledge, we currently focus on predicting (i) Quasi-direct drive actuator design enables high
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motions (Fig. 2-b). Challenges include performing nonlinear

optimization of future leg motions within the first 50ms of swing.  * Quasi-direct drive leading to actuation paradigm shift (Fig. 4)
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Figure 2. Example integration of reasoning about environment. Figure 4. Our actuator achieves high compliance and high bandwidth.
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Reasoning about user intent uses data-driven
learning to predict human-desired limb behavior
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Different learning algorithms have been proposed to predict

behavior of human actors including VAEs, CNNs, LSTMs, and —U AR E IR

CRBMs. We currently investigate which of these adapts to the T Ve T T " s

specific case of predicting future leg behavior not only for steady Figure 5. Demonstration of high compliance and high bandwidth with

gait3 but also for transitory motions such as obstacle encounters, our high-performance exoskeletons.

intentional step corrections, and gait transitions (Fig. 3).
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