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• Traditional path planning problems for robotics and autonomous vehicles 
consider collision avoidance enough for safety. This consideration is not 
enough for emerging automated systems that perform complex tasks 
requiring safety criticality.

• 3M (Multi-horizon Multi-objective Model predictive path integral control) 
maximizes feasibility of safe landing in case of emergency at any destination.
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MOTIVATION

BACKUP PLAN CONSTRAINED CONTROL

SAFE CONTROL

Multi-objective

• Address multi-destination 
control problems

• Closed-loop stable weight

MPPI control

• Handle computational 
complexity by parallel 
computing

Multi-horizon inputs

• Evaluate multiple different 
objectives by providing 
trajectories towards all the 
destinations

• The aircraft with 3M makes a detour to the 
primary destination in both cases, flying 
near alternative destinations.

• The detour trajectories are safer in the 
backup plan sense, providing a shorter path 
toward one of the alternative destinations 
when an emergency landing is in need.

: Primary destination : Alternative destination

Illustrative example
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Given primary and alternative destinations, how to design a controller 
for the aircraft to arrive at the primary destination while maximizing the 
feasibility of safe landing at any destination in case of emergency?
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• Contraction theory enables consideration of 

nonlinear reference systems and is applicable 

to a large class of nonlinear systems.

• 𝓛1-adaptive control compensates for 

uncertainties with guaranteed robustness.

• Combined architecture allows for publishing 

certificates of performance and robustness.
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Ωρ ∝ adaptation rate

Ω𝑐 ∶ decaying error
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• ℛℒ1- 𝒢𝒫 safely incorporates the learned information 
regardless of the state of learning,  the tube shrinks 
without sacrificing robustness

• Learned estimates incorporated into State-predictor 
and Planner
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• Enables robots with nonlinear dynamics to safely operate under the presence of 
model uncertainties and external disturbances

• ℛℒ1-Control ensures safety tubes around the desired trajectory which can be made 
arbitrarily small in the trade-off with robustness

• Fast and robust re-planning is needed for mission success in complex, dynamic and uncertain environments. 

• Model predictive path integral (MPPI) control provides a framework for solving nonlinear MPC with complex 
constraints in near real-time.

• Robustness against dynamic uncertainties and disturbances is achieved through an ℒ1 augmentation.
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• Can leverage parallel sampling for modern GPUs
• Can handle complex (possibly non-differentiable) dynamics and 

cost functions

Unknown nonlinearity, disturbance

• Optimal control computation 

forward in time for nominal 

system

• Update the control sequence 

iteratively by sampling

(thousands of) trajectories

MPPI

• Robustifies against the 

discrepancy 

• Guaranteed robustness and 

transient and steady-state 

bounds for performance

𝓛𝟏 adaptive control

Nominal system

• Many systems with large operating envelopes require the nominal/desired dynamics to 
be scheduled with the operating point

• Main ideas

- Use LPV models to characterize the variation of desired dynamics

- Leverage robust control method to handle unmatched uncertainties

- Validated on an F-16 aircraft in nonlinear simulations

Airspeed

Altitude

Control Law w/

Lowpass Filter  
Uncertain System

State Predictor

(Reference Model)

Fast Adaptation

_

Usually characterized 
by an LTI system

Poles of the nominal closed-loop system VS (scaled) dynamic pressure

Fast SlowAchieved nominal response

Trajectories of angle of attack (AoA) under different operating points 
(Dashed lines: desired, Solid lines: actual)

ROBUST ADAPTIVE CONTROL WITH SCHEDULE
FAST REPLANNING

Fixed Rank Resilient Filtering (FRRF)
• Efficient recursive estimation for large area
• Robust to modeling error

Proactive ℒ1 Adaptive Controller and Velocity Design
• Robust design for all predicted uncertainty range
• Rapid disturbance compensation
• Guaranteed transient and steady-state performance
• Safe velocity range

• FRRF generates prior estimation heatmap characterized by mean and variance.
• Estimation performance has been compared with full measurement and sparse 

measurements in the presence of modeling uncertainty.
• Proactive control maintains desired transient and steady state performance for 

all environmental conditions.
• The velocity design program provides maximum safe velocity.

Snowing condition

Maximum velocity

This is motivated by the need for proactive adaptive control in response to complex and unforeseen environments.

NETWORKED PROACTIVE ADAPTATION

NETWORKED PROACTIVE ADAPTATION
• Spatiotemporal model of dynamically changing environment

• Multi-level estimation and planning of exploration over grid map
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- Estimating Hidden State (GREEN) -- Multi-level Framework -
https://youtu.be/ajCEbuEkpbY

• In 2009, Airbus 320 lost both engines shortly after 
takeoff due to bird strike. 

• Sully glided the plane to a ditching in the Hudson 
River off Midtown Manhattan. All 155 people 
aboard were rescued by nearby boats.

• Flight control outside of the operation window
(Credit: Wikipedia)

What does it take to achieve the goal of fully autonomous autopilot (Virtual Sully) that can 
make the right decision in the presence of unexpected large uncertainties?

https://youtu.be/ajCEbuEkpbY
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