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Multi-Level Privacy [3]

Motivation

A fully autonomous vehicle should be able to self localize even in GPS-
denied environments (e.g., when an adversary spoofs GPS)

Goal

• Leverage sensors together with a preloaded map of landmarks to self
localize quickly despite errors in landmark identification

• Provide theoretical guarantees on the expected performance

Approach

• Fast: use unique sequences of plentifully available landmarks

• Robust to errors: connect to error correction in coding theory (where
codeword = a group of landmark sequences ending at same location)

• Efficient decoding: using a Viterbi-like polynomial time algorithm

Reliable localization using landmarks [1]

Secure Time-Series Communication [2]

Model: 
• 𝑛 users, each has a sample 𝑋𝑖~𝒑
• 𝑑 analysts want to estimate 𝒑
• Each user 𝑖 has a random key 𝑈𝑖
𝐆𝐨𝐚𝐥:
• Design DP-mechanisms 𝑄𝑖: 𝑖 ∈ 𝑛 : 𝑄𝑖 = 𝑓 𝑋𝑖 , 𝑈𝑖
• To preserve privacy of each user
• To minimize the risk minimization of each analyst
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Necessary and Sufficient Conditions to Design 𝑸
• The number of keys must be at least the same as the output size that 

must be at least the same as the input size: 𝑈 ≥ 𝑌 ≥ 𝑋
• The entropy of the private key must satisfy: 𝐻 𝑈 ≥ 𝐻 𝑈𝑚𝑖𝑛

𝑠

𝑈𝑚𝑖𝑛
𝑠 ~ 𝑞𝑚𝑖𝑛

𝑠 =
𝑒𝜖

𝑠 𝑒𝜖 − 1 + 𝑘
,⋯ ,

1

𝑠 𝑒𝜖 − 1 + 𝑘
• The entropy of this key is less than what is required in one-time pad 

for perfect privacy
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Publication output 

The project has overall resulted in more than 30 publications in top tier 
journals and conferences

REU achievement  

This project has supported 6 REU students that have worked on a variety of 
cross-cutting projects

Motivation
• Control input can be calculated by minimizing an objective function

(e.g., model predictive control)
• Control over the cloud requires communication of private data -

vulnerable to eavesdropping attacks

Cloud

Plant
- Dynamics Σ
- Objective 𝐽

Secret key: 𝜓

𝑦𝑘{𝜓∗Σ, 𝜓∗𝐽}
𝑢𝑘

Algorithm
1) Handshaking: Plant encodes Σ

and 𝐽 with 𝜓, and sends them to
the cloud

2) Plant operation:
• Encoding: Measure 𝑦𝑘 and send

encoded 𝑦𝑘 = 𝜓∗𝑦𝑘 to the cloud
• Optimization: Cloud uses 𝑦𝑘 to

find input 𝑢𝑘 minimizing 𝜓∗Σ w.r.t
dynamics 𝜓∗𝐽, send 𝑢𝑘

• Decoding: Decode 𝑢𝑘 = 𝜓∗
−1 𝑢𝑘

and apply it to the actuators

Minimize 𝜓∗J w.r.t dynamics 𝜓∗Σ

Results
• Created a lightweight encoding scheme using isomorphisms of

control systems
• Cloud is unable to learn the state, the dynamics, or the objective
• Proposed a measure of privacy (in terms of the dimension of

uncertainty set)
• Quantified privacy loss with side knowledge
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Dynamical Control System
𝑋𝑡+1 = 𝐴 𝑋𝑡 + 𝐵 𝑈𝑡 +𝑤𝑡

𝑌𝑡 = 𝐶 𝑋𝑡 + 𝑣𝑡
• We define two distortion measures for sequential data i.e., state 

transitions of a control system:

Goal: 
• Maximize Distortion by designing encoding 

functions 𝜏𝑡

For Average Case:
• Mirror across hyperplanes for 

certain symmetric distributions
• Hyperplane can be picked with 

just one bit of key
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• Probabilistic guarantees: translate 
Hamming distance properties to 
probabilistic guarantees on the worst-
case length of landmark sequences that 
need to be sensed for localization, given 
a number of expected errors

• Numerical evaluation: using landmarks 
extracted from map of Washington DC


