
Real-Time Computer Vision in Autonomous Vehicles: Real Fast Isn’t Good Enough
University of North Carolina Chapel Hill

PI: Prof. James Anderson, co-PIs: Prof. Jan-Michael Frahm, Dr. Frank D. Smith, & Dr. Shige Wang
Students: Tanya Amert, Nathan Otterness, Thanh Vu, Sergey Voronov

Award ID: CPS 1837337

A significant gap exists between how computer-vision
software and embedded safety-critical software define the
term real time. In computer vision, "real time" often means
"real fast" and refers to high average throughput with low
latency. In contrast, safety-critical embedded systems
consider "real time" to be a statement about predictable
timing under continuous performance.

Put in a larger context, this disparity in definitions is merely
a symptom of the fact that, historically, computer vision and
embedded systems have evolved independently. With the
advent of autonomous vehicles, where safety depends on
both computer vision and predictable timing, a clear
separation between vision and embedded software is no
longer possible.

In the near future, autonomous vehicles will face the need

for real-time certification, which will cause the “real-time”

vs. “real-fast” disconnect to become more problematic as

time passes.

Certifying applications that are merely “real-fast” will be

almost impossible, but, as of now, there is no simple way to

map traditional computer-vision applications into the

frameworks needed to ensure predictable timing required

by safety-critical systems.

Our project seeks to address this problem by developing a

framework to bridge this gap between “real-fast” and “real-

time” software.

Motivation

Problem

This project focuses on four principal objectives:

• Develop a real-time-aware computer-vision API.

• Develop real-time schedulability analysis targeting our

new API.

• Develop real-time computer-vision algorithms that

exploit our API's new features.

• Experimentally compare "real-fast" and "real-time"

computer vision.

Objectives

• Summer internship project in General Motors Research &

Development, 2018

• Summer internship project in General Motors Research &

Development, 2019

• Demonstrated autonomous driving simulation to middle

school students, Spring 2019.

• Summer internship project in General Motors Research &

Development, 2020.

Activities

Real-Time Task Model for Graphs with Cycles

Computer-vision algorithms to track that movement of
pedestrians and other vehicles are usually expressed as real-
time processing graphs. These graphs contain cycles due to
back edges that provide history information. Using older back
history enables parallelism in cycle execution at the expense
of possibly affecting tracking accuracy.

• We explored the trade-off between response times, intra-
task parallelism, and accuracy for Multi-Object Tracking.

• We found that allowing non-immediate back history had
only a marginal impact on accuracy.

Real-Time Computer-Vision Graph Scheduling

Real-time scheduling of computer-vision applications
presents several challenges:

• Application graphs may include cyclic dependencies, such as
using previous results in subsequent calculations.

• Computer vision often requires specialized computing
hardware, i.e. GPUs, which have unknown timing and
hardware-interference properties.

• Workloads may need to change dynamically, based on
environmental conditions or fault-tolerance requirements.

Inference-Adjustable CNNs

CUPiD^RT: Detecting Improper GPU Usage

Computer-vision algorithms typically rely on GPUs to
accelerate computations. However, improper GPU usage can
lead to unexpected delays on the GPU and on the host CPU.

We developed a software library to detect the improper use
of GPUs for safety-critical computer-vision applications.

• We found that all ten GPU-using OpenCV sample
applications we considered had issues flagged by our tool.

• Fixing detected issues resulted in shorter and more
predictable execution times and GPU kernel launch times.

Most CNNs operate as monolithic entities, posing a challenge
for autonomous-driving applications with situationally varying
budgets. We proposed an adjustable CNN architecture that
allows fine-grained control over the speed-accuracy trade-off
depending on the available resources during inference.

By leveraging statistical observations, we can provide flexible
and maximally granular control along with state-of-the-art
accuracy without additional post-training calibration.

• M. Yang, S. Wang, J. Bakita, T. Vu, F.D. Smith, J. Anderson, and J.-

M. Frahm, Re-thinking CNN Frameworks for Time-Sensitive

Autonomous-Driving Applications: Addressing an Industrial

Challenge, in RTAS ‘19.

• T. Amert, S. Voronov, and J. Anderson, OpenVX and Real-Time

Certification: The Troublesome History, in RTSS ’19.

• T. Vu, M. Eder, T. Price, J.-M. Frahm, Any-Width Networks, in

CVPR Workshops ‘20.

• N. Otterness, J. Anderson, AMD GPUs as an Alternative to NVIDIA

for Supporting Real-Time Workloads, in ECRTS ‘20.

• T. Amert, M. Yang, S. Nandi, T. Vu, J. Anderson, and F.D. Smith,

The Price of Schedulability in Multi-Object Tracking: The History-

vs.-Accuracy Trade-Off, in ISORC ‘20.

• T. Amert and J. Anderson, CUPiD^RT: Detecting Improper GPU

Usage in Real-Time Applications, in ISORC ‘21.

• N. Otterness, J. Anderson, Exploring AMD GPU Scheduling Details

by Experimenting With “Worst Practices”, in RTNS ‘21.

Selected Publications (out of 22 total)

Investigating Open-Source GPU-Compute Software

GPUs, or similar accelerators, are fundamental to timely
operation of sophisticated neural-network operation in
safety-critical systems. NVIDIA’s CUDA framework for GPU
programming remains massively popular in this space, despite
being closed-source: unamenable to auditing or modification.

GPUs manufactured by AMD instead use ROCm, an open-
source competitor to CUDA. Unfortunately, many behavioral
and timing characteristics differ between CUDA and ROCm.

• We used a combination of experiments and sparse public
documentation to publish a unified picture of how AMD
GPUs and ROCm schedule compute workloads.

• We measured the efficacy of ROCm’s built-in support for
hardware partitioning, including effective partitioning
strategies.

Developing a Framework for Real-Time Computer-Vision Workloads

