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A number of large-scale cyber-physical systems 
(CPS) today are effectively digitally-mediated 
markets. These CPS impose fundamental physical 
constraints: these include environmental 
uncertainty, spatial heterogeneity, temporal delays, 
and resource constraints. A technology-enabled 
platform digitally mediates transactions between 
buyers and sellers with the ability to shape the 
interaction of these agents. 

Introduction

Challenges:

• Works on learning in commonly overlook the 
hierarchical decision-making structure. 

• Studying Stackelberg games provide insights 
into optimization landscapes of zero-sum games. 

• We show that deterministic gradient updates 
only converge to Stackelberg equlibria

Learning in Stackelberg Games Learning in Cournot Games Adaptive Experimental Design
• Suppose there are two algorithms that you want 

to compare over time
• The industry practice is to randomly switch 

between the two and see how they do:

• Not a good idea because of interference: each one
change the system states seen by the other

• Consider two different Markov chains, indexed 
by 𝑙 = 1,2 evolving on a common space 𝑆, 
defined by transition matrices 

• A policy is a sequence of random variables 𝐴 =
𝐴!, 𝑛 ≥ 0 , 𝐴! = 1,2 that determines which 

chain to run
• The stationary rewards are 𝛼 2 , 𝑎(1)
• Goal: design a policy and an estimator to estimate 

the treatment effect 𝛼 = 𝛼 2 − 𝑎(1)

• A naïve sampling policy leads to an estimation 
variance that scales with 𝑠, the number of states 

• A joint policy gives estimators with variance that 
does not grow with 𝑠

• The idea is to leverage cooperative exploration:
using one chain to drive the states where we want 
to sample using the other chain

• We use the maximum likelihood estimator (MLE)
• The policy can be designed using a convex 

optimization problem, and the MLE is both 
consistent and efficient [3]

• Consider zero-sum games on continuous action 
spaces (𝑋", 𝑋#) and cost (𝑓, −𝑓)

• The leader (player 1) and the follower (player 2) 
solves the following problems:

• We are interested in differential Stackelberg 
equilibria: the joint strategy 𝑥∗ = 𝑥"∗, 𝑥#∗ , where 
𝐷𝑓" 𝑥"∗ = 0,𝐷#𝑓% 𝑥#∗ = 0,𝐷#𝑓" 𝑥∗ >
0,𝐷##𝑓# 𝑥∗ > 0, where 𝐷& is the partial 
derivative and 𝐷 is the total derivative
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Approaches:

Model

Cyber and physical worlds and inherently meshed 
and digital platforms that support market-based 
services are entangled with physically constrained 
systems. To design optimal platforms, we must 
consider the following:
• Agent behavior can be quite complex
• They possess limited information and receive 

limited feedback 
• They learn continuously over time to discover 

optimal strategies Learning Dynamics

• Cournot games are used to model many socio-
economic systems where players learn and 
compete without the full information

• They are not no-regret games 
• We show that policy gradient dynamics converge 

to Nash equilibria

We consider two levers available to a platform: 
• Information feedback mechanisms 
• Price-setting Mechanisms
We approach the problem from two viewpoints:
• From the agents, we characterize the collective 

behavior of dynamic learning agents
• The platform design policies for both 

information disclosure and pricing changes. We 
are especially interested in how these two 
complement each other. 
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Model
• Consider N players producing a homogenous 

good, each with action space 𝑥& ≥ 0
• The profit of player 𝑖 is 

where 𝑝 is the market price function and 𝐶 is a cost
• We are interested in Nash equilibria, a vector 
𝑥 ≥ 0, where

Learning Dynamics
• At each time step, player 𝑖 draws an action in the 

form of                                       , where 𝑋& is a 
random variable. E.g., 𝑋& Gaussian gives the 
standard Gaussian policy gradient

• The mean 𝜃& is updated based only on the 
gradient of the expected return of player 𝑖

Results
The policy gradient updates converges
exponentially quickly to a Nash equilibrium if [2]:
• The price function is linear
• There are only two players 
We conjecture that this result holds for more 
general settings

• Each player follows gradient dynamics

• We assume the full information setting where 
the gradients can be computed exactly 

Results
Under mild assumptions, deterministic updates 
converge to a Stackelberg equilibrium at the rate of 
𝑂 𝜖' , where 𝜖 is a constant and 𝑘 is the number of 
iterations [1]
• This can be much faster than simultaneous 

updates when players moves at the same time
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xi,k+1 = xi,k � �i,khS,i(xk)

Learning covariance matrix. Orange is the Stackelberg setting (no 
oscillation) and blue is simultaneous gradient descents 

[1] Fiez, Chasnov, and Ratliff. "Implicit learning dynamics in stackelberg
games: Equilibria characterization, convergence analysis, and empirical 
study." In ICML, 2020
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[2] Shi and Zhang. "Multi-agent reinforcement learning in cournot
games." In IEEE Conference on Decision and Control (CDC), 2020
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P (l) = (P (l, x, y) : x, y 2 S), l = 1, 2

Example
Chain 1 is red, and chain 2 is 
blue. Rewards are only earned 
in state 1 for each chain. The 
reward distribution is 
Bernoulli(𝑞 𝑙 ) for chain 𝑙

Results

[3] Glynn, Johari, and Rasouli. "Adaptive experimental design with 
temporal interference: A maximum likelihood approach." NeurIPS
2020


