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A number of large-scale cyber-physical systems ’ Works on leamipg In commonly overlook the * (Cournot games are used to model many socio- * Suppose there are two algorithms that you want
(CPS) today are effectively digitally-mediated hierarchical decision-making structure. economic systems where players learn and to compare over time
markets. These CPS impose fundamental physical * Studying Stackelberg games provide insights compete without the full information e The industry practice is to randomly switch
constrai.nts: thes§ include enviljonmental into optimization landscapes of zero-sum games. » They are not no-regret games between the two and see how they do:
uncertainty, spatial heterogeneity, temporal delays, *  We show that deterministic gradient updates «  We show that policy gradient dynamics converge - : 1 . 1 5
and resource constraints. A technology-enabled only converge to Stackelberg equlibria to Nash equilibria
platform digitally mediates transactions between Model | |
buyers and sellers with the ability to shape the ode Model * Not a good i1dea because of interference: each one
interaction of these agents. * (Consider zero-sum games on continuous action —_— change the system states seen by the other
spaces (X, X5) and cost (f, —f) * Consider N players producing a homogenous Model
. . ; - —_—
—g_Cha llenges: * The leader (playe.r 1) and the follower (player 2) good, each Wltjl act1(.)1.1 space x; = ( * Consider two different Markov chains, indexed
Cyber and physical worlds and inherently meshed solves the following problems: * Theprofitofplayeriis by [ = 1,2 evolving on a common space S,
and digital platforms that support market-based SR {f1(z1,22) ‘ T2 € arg ;2% f2(z1,9)} Til@,- - EN) = Tiop ;“’f ~ Cil@i) defined by transition matrices
Services are ente.mgled With physically constrained min fo(, o) where p 1s the market price function and C 1s a cost P(l)=(P(l,z,y): 2,y € S),l=1,2
syste.ms. To design thlmal platforms, we must T2E X2 * We are interested in Nash equilibria, a vector A policy is a sequence of random variables A =
consider the folloowmg.q | + We are interested in differential Stackelberg x = 0, wlﬂzerqk s A (A, n = 0),4, =1{1,2} that determines which
* Agent behavior can be quite complex equilibria: the joint strategy x* = (x7, x3), where mi(2;,X2;) 2 (%, x75), for all z; chain to run
° 1The'¥ EOfSSGdSS liilited information and receive Df; gxi‘ ) = 0,D,f,(x3) = Q, D*f; (x*? > Learning Dynamics » The stationary rewards are a(2), a(1)
tited teedbde 0,D3 f,(x*) > 0, where D; is the partial | | o * Goal: design a policy and an estimator to estimate
o They learn continuously over time to discover derivative and D is the total derivative * Ateach time step, player i dra‘fs an action in the the treatment effect & = a(2) — a(1)
ontimal stratee; form of a; ~ e, (-) = (8; + X;)™, where X; is a
ptimal strategies 1 - D - . . .
earning vynamics random variable. E.g., X; Gaussian gives the Examgle
hes: * Each player follows gradient dynamics standard Gaussian policy gradient % %o Chain 1 is ted. and chain 2 is
Aggroac esS. i ba1 = Tik — Yirhs i (@) * The mean 6; 1s updated based only on the blue. Rewar ds, are onlv earned
: e 1’1 - o . h gradient of the expected return of player i 1% 1%8 o stéte | for each cha?n The
We consider two levers available to a platform: We ASSUIIC the Tull mformation setting where C e e
, , the gradients can be computed exactly 1 1 reward distribution 1s
* Information feedback mechanisms ! : B HiCa (D) for chain I
| | o R It Results ernoulli(q(l)) for chain
* Price-setting Mechanisms RESUILS — * A naive sampling policy leads to an estimation
We approach the problem from two viewpoints: Under mild assumptions, deterministic updates The policy gradient updates converges variance that scales with s, the number of states
* From the agents, we characterize the collective converge to a Stackelberg equilibrium at the rate of exponentially quickly to a Nash equilibrium 1t [2]: * A joint policy gives estimators with variance that
behavior of dynamic learning agents 0 (Ek), where € is a constant and k is the number of * The price function is linear does not grow with s
° The platfprm Flesign policies fo?’ both iterations |1 * There are only two players Results
1nf0rmat1.orhd1.sctlosu1;e :;I,ld E r1c11tl§ chatnges. we * This can be much faster than simultaneou§ We conjecture that this result holds for more
Are CSpeCldily TIETESIEE M MOW IESE WO updates when players moves at the same time general settings * The idea is to leverage cooperative exploration:

complement each other.

[ [ T using one chain to drive the states where we want
25 05 —— Player 3 0.5 —— Player 3 . .
to sample using the other chain
Students and Postdocs: g b & e |
| - * We use the maximum likelihood estimator (MLE)
° o o o ° u e 0.2 . i i
Tanner Fiez, Benjamin Chasnov, Yuanyuan Shi 2.5 \f +  The policy can be designed using a convex
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(VW )o0 optimization problem, and the MLE 1s both
* Mohammad Rasouli at Stanford Learning covariance matrix. Orange is the Stackelberg setting (no 3-player symmetric game 3-player asymmetric game consistent and efficient [3]
oscillation) and blue is simultaneous gradient descents
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