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Introduction: Autonomous Mobility-on-Demand (AMoD)

AMoD: mode of transportation wherein self-driving, electric vehicles transport
passengers on demand in a given environment
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Key observation: AMoD will give rise to complex couplings between the power and
transportation networks over a wide range of temporal and spatial scales

Controls: e.g. prices, energy generation schedules

Power network

Charging demand
Energy storage

Electricity prices
Energy provision

Controls: e.g. vehicle routes, charging schedules
Project goal: devise computational methods for the optimal coordination of power-in-the-
loop AMoD (P-AMoD) systems, that is methods to jointly determine routes for the
autonomous vehicles, charging schedules, electricity prices, and power generation schedules

Project Objectives
Objective 1: Modeling

* Devise models that capture the couplings between AMoD systems and the
electric power network and are amenable to efficient optimization

Objective 2: Control

 Design algorithms for real-time, congestion-aware, power-in-the-loop
routing, rebalancing, and charging of autonomous vehicles at a city-wide scale

Objective 3: Case studies

* Evaluate models and algorithms via large-scale case studies based on real-
world data

AY20-21 Contributions

1. Network flow optimization that coordinates a P-AMoD fleet with the power distribution network

2. Study of competition in electric AMoD (E-AMoD) by comparing monopoly and duopoly equilibrium
3. Real-time control of an E-AMoD fleet in a stochastic environment with dynamic pricing

4. Network flow optimization that jointly optimizes charging station siting and E-AMoD operations
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Technical Approach: Multi-commodity Network Flows

Road network: directed graph G(V, E)
Congestion model: capacity constraint on each edge
Augmented network flow model: time and state of charge
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Interaction between AMoD and power network
can be optimized as a linear program
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* Uncoordinated electric AMoD causes substation overloads
(7.98MVAh) and voltage violations (24.04 p.u.-h) across 14
PDNs over an 8-hr commute cycle

* Coordination reduces substation overloads by 99.71% and voltage violations by 50.28%,
while operating costs increase by only 3.13% (3300 USD)
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Results: Competition in E-AMoD Systems

e Study competition in electric AMoD systems by comparing the monopoly and
the duopoly in equilibrium. y
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e |dentical competitors can only be in a symmetric equilibrium. =

cx+(1l—o)y= E}j(t)

e Closed-form bounds quantify the impacts of the competition on the ride
prices, the profits of the firms, the aggregate demand served and the
consumer surplus.

oz + (1 — 0)(bmax — y) = 2,(1)
e Higher correlation between customers’ preferences strengthens the J

competition and boosts the impacts of competition.
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[2] B. Turan and M. Alizadeh, “Competition in electric autonomous mobility on demand systems,” IEEE Transactions on Control of Network
Systems, under review.
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Results: Real-time Control

e Develop joint pricing, vehicle routing, and vehicle charging policy.

e Optimal static policy guarantees stability of the queues, however, is oblivious to the
stochastic events occurring in the dynamic environment.
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e A real-time control policy can perform better in the stochastic environment.

e Due to the curse of dimensionality, intractable to solve for the optimal policy.

e Utilize deep reinforcement learning to establish a near-optimal policy.

RL Policy

- . Prices
Electricity Prices Routing

Charging

Vehicle locations &

battery energy levels
.

Case Study in Bay Area

e Using real network and demand data, develop and implement RL policy.

e 400x shorter queues, 25% less charging costs, increased profits.
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[3] B. Turan, R. Pedarsani, and M. Alizadeh, “Dynamic pricing and fleet management for electric autonomous mobility on demand systems,”
Transportation Research Part C: Emerging Technologies, vol. 121, p. 102829, 2020.

Charging infrastructure capacity [MW]

e Planning and operations optimized jointly: station siting, fleet
sizing, charging, routing, and rebalancing solved using LP flow model
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 Case Study in San Francisco: joint siting of stations reduces empty-
vehicle distance traveled, peak charging demand, and total fleet
costs by 10% compared to scaled up present-day siting
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[4] J. Luke, M. Salazar, R. Rajagopal, M. Pavone, “Joint Optimization of Electric Vehicle Fleet Operations and Charging Station Siting,” 24th
IEEE International Conference on Intelligent Transportation, under review.

Conclusions

AMoD systems can act as mobile storage units in the power network

e Cooperation results in near elimination of substation overloads and halving of voltage
violations with a modest cost increase (OC case study)

* Reinforcement learning model controls pricing and fleet operations in a stochastic real-time
environment with reduced queues and charging costs

e Charging station siting sensitive to where vehicles are available at times of low electricity
rates and travel demand, and to management of power demand
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