Distributed Learning for Control of Cyber-Physical Systems

Michael M. Zavlanos

Duke University

Project Overview

CPS control with Distributed Reinforcement Learning (RL) methods

Pros

- Free of high-fidelity models

- Natural runtime adaptation

Cons

- No performance guarantees under partial observations

- Large variance during learning

Goal: To develop a novel distributed RL framework for the control of CPS, so that it has performance guarantees under partial observations.

Impact:

- Guarantees on sample complexity of distributed RL for control of CPS under partial observations
- Preservation of local user's privacy and robustness to single-node failure
- Applications to many domains, e.g., smart city, health care, etc.
- K-12, undergraduate, and graduate education

Diversity

CPS Case Study: Distributed Shared Vehicle Dispatch Systems

- 16 dispatch centers on a 4 x 4 grid
- Local uncertain demand (1)

$$d_i(t) = A_i sin(\omega_i t + \phi_i) + w_i(t)$$

• Local reward penalizing resource \Leftrightarrow shortage if $m_i(t) > 0$

Transition of local resource

$$m_i(t+1) = m_i(t) - \sum_{j \in \mathcal{N}_i} a_{ij}(t) m_i(t) + \sum_{j \in \mathcal{N}_i} a_{ji}(t) m_j(t) - d_i(t)$$

Local observation

$$o_i(t) = [m_i(t), d_i(t)]$$

Zeroth-Order Gradient Estimators

Consider the optimization problem

$$\min_{x \in \mathbb{R}^d} f(x) = \mathbb{E}_{\xi} [F(x, \xi)]$$

where ξ is the objective function evaluation noise.

ZO Estimator

One-Point

Two-Point

$$\tilde{\nabla} \mathbf{f}(\mathbf{x})$$
 $\frac{u}{\delta} F(x + \delta u, \xi)$

 $\frac{u}{\delta} \big(F(x + \delta u, \xi) - F(x, \xi) \big)$

Drawback

Subject to large variance and slow convergence

Each update requires multiple-point evaluation, difficult to implement in distributed or non-stationary environment.

A New One-Point ZO Residual Feedback Oracle

Proposed One-Point Residual-Feedback Estimator:

$$\tilde{\nabla} f(x_t) := \frac{u_t}{\delta} \left(F(x_t + \delta u_t, \xi_t) - F(x_{t-1} + \delta u_{t-1}, \xi_{t-1}) \right)$$

It solves static optimization problems with iteration complexity:

Complexity		Convex $C^{0,0}$	Convex $C^{1,1}$	Nonconvex $C^{0,0}$	Nonconvex $C^{1,1}$
One-point	Gasnikov et al.(2017)	$d^2\epsilon^{-4}$	$d\epsilon^{-3}$	_	_
Two-point	Duchi et al. (2015)	$d\log(d)\epsilon^{-2}$	$d\epsilon^{-2}$	_	_
	Shamir (2017)	$d\epsilon^{-2}$	_	_	_
	Nesterov & Spokoiny (2017)	$d^2\epsilon^{-2}$	$d\epsilon^{-1}$	$d^3\epsilon_f^{-1}\epsilon^{-2}$	$d\epsilon^{-1}$
	Bach & Perchet (2016)	_	$d^2 \epsilon^{-3} \text{ (UN)}$	_	_
Residual One-point	Deterministic	$d^2\epsilon^{-2}$	$d^3\epsilon^{-1.5}$	$d^4 \epsilon_f^{-1} \epsilon^{-2}$	$d^3\epsilon^{-1.5}$
	Stochastic	$d^2\epsilon^{-4}$	$d^2\epsilon^{-3}$	$d^3\epsilon_f^{-3}\epsilon^{-2}$	$d^4\epsilon^{-3}$

where ϵ is suboptimality in the function value for convex problems, or is the squared norm of the gradient at the final iterate. The one-point residual feedback estimator enjoys almost the same convergence speed as the two-point estimator, but only require one-point evaluation per update.

Distributed RL under Partial Observations

Proposed distributed RL problem:

$$\min_{\theta} J(\theta) := \sum_{i=1}^{N} J_i(\theta)$$

where $\theta = [\theta_1^T, \theta_2^T, \dots, \theta_N^T]^T$ and θ_i parameterizes agent i 's local policy function $\pi_i: \mathcal{O}_i \to \mathcal{A}_i$.

Proposed Framework:

Sharing accumulated local rewards during an episode

Environment

Update local policy with zeroth-order policy gradient (1), instead of distributed Actor-Critic based policy gradient which requires full observation.

Distributed ZO policy gradient estimator with residual feedback:

$$\theta_{i,k+1} = \theta_{i,k} + \alpha \frac{\tilde{J}(\theta_k + \delta u_k, \xi_k) - \tilde{J}(\theta_{k-1} + \delta u_{k-1}, \xi_{k-1})}{\delta} u_{i,k} \tag{1}$$

where $\tilde{J}(\theta_k+\delta u_k,\xi_k)=\sum_{j\in\mathcal{N}_i}[W^{N_c}]_{ij}^{o}\mu_j^k$, W and N_c represent the communication matrix and the number of consensus steps per episode.

Theorem: Assume that the value function $J_i(\theta, \xi)$ belongs to the interval $[J_l, J_u]$ and select the number of consensus steps as

$$N_c \ge \log(\frac{\sqrt{\epsilon\epsilon_J}}{\sqrt{2}d^{1.5}L_0(J_u - J_l)})/\log(\rho_W)$$

Then, we have that

ave that
$$\frac{1}{K} \sum_{k=1}^{K-1} \mathbb{E} \big[\|\nabla J_{\delta}(\theta_k)\|^2 \big] \leq \mathcal{O}(d^{1.5} \epsilon_J^{-1.5} K^{-0.5}) + \frac{\epsilon}{2}.$$

Simulation Results:

The proposed distributed residual-feedback zeroth-order policy gradient enjoys faster convergence speed and lower variance during learning, compared to conventional one-point policy gradient.

The performance of the proposed distributed RL algorithm gets closer to that of the centralized algorithm under partial observation scenario as N_c increases .