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• Human Cyber-Physical Balance Systems (HCPBS)

Figure 1: A set of  example of  human cyber-physical balance 
systems, such as Furuta pendulum, autonomous bikebot and bipedal 
walkers (from left to right). 

Control Goal and Challenges

 Goal: Achieve trajectory tracking 
and balance tasks with fewer 
numbers of  control inputs than 
degrees of  freedom

 Challenges: Trajectory tracking 
and balance tasks are intertwined 
and no analytical casual controller 
to achieve exactly tracking 

• Scientific Impacts
― The proposed learning-based control of  HCPBS will generate algorithms and enabling 

tools for control design for complex human-in-the-loop CPS
― The characterization of  physical principle-based dynamic models and data-driven models 

enables a new control design for many human CPS applications
― The integration of  data-driven model and learning-based control provides new 

perspectives on performance enhancement of  safety-critical or mission-critical CPS in 
dynamic, uncertain environments 

― The development of  hardware/software co-design accelerator brings new real-time 
machine learning schemes that enable the computationally intensive control systems in 
many CPS applications Research project objective: Develop a real-time machine learning-based control 

framework for human cyber-physical balance systems (HCPBS) 

• Overview Design of  the Learning-based Control of  HCPBS  

Figure 2: Concepts of  the real-time machine learning-based control of  
HCPBS.

Basic System Components

 A machine learning-based 
modeling and characterization

 Hardware co-design real-time 
learning-based robust control

 Multiple robotic testbeds testing, 
validation and performance 
evaluation

• Learning-based Robust Control Design 

― The HCPBS dynamics are captured by an external (actuated) 
and an internal (unactuated) subsystems

― Problem statement: 

― Gaussian process is used to estimate the external and internal 
subsystems dynamics

Figure 3: Schematic of  the learning-based 
control design.

• Learning-based Control Properties 
― The external subsystem tracking and internal subsystem balance errors are proven to be bounded
― The predictive GP covariance is integrated with the MPC design to improve control robustness
― No balanced training data is needed and it is attractive for field testing

• Hardware Architecture Design for Matrix Inversion-based GP Models 
― Explored efficient hardware architecture 

for GP implementation, including 
covariance generation, matrix inversion 
and post-processing modules

― The proposed hardware accelerator 
achieves 2991× and 1857× less area and 
power consumption, respectively  
(compared to Intel Core i7-7700K CPU) Figure 4: (a) An overview architecture of  GP implementation. (b) Performance 

comparison with the CPU implementation. 

• Experimental Testbed and Validation 

Figure 5: Experimental testbed for 
autonomous bikebot.

― Build autonomous bikebot
testbed platform

― Implemented both the 
external/internal convertible 
(EIC)-based control (i.e., 
physical model-based) and the 
GP-based learning control 

― Compared the results under 
the two controller

Figure 6: Mean error profiles with variance for (a) 
straight-line, (b) sinusoidal, and (c) circular trajectories 
and roll angle errors (d)-(f) for these trajectories.

• Broader Impacts
― The experiments demonstrated that the learning-based control outperformed the physical-model control with 

50% tracking error reduction
― Supported and trained four graduate students (three PhD and one MS level) and three undergraduate students 
― Presented two conference papers and two journal publications in the past year 


