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EXAMPLE: DRIVE-BY-WIRE SYSTEM

Fig. 1: Model of a Power Train Fig. 2: Dependencies between reactions

C, POSIX, PTHREADS PRECISION-TIMED HARDWARE

REACTORS are reactive software components that are 
composed out of reactions, which may be triggered by events 
produced internally (actions) or originating from other 
reactors (inputs). A reactor may contain other reactors and 
manage their connections. Connections define the flow of 
events, and two reactors can be connected only if they are 
contained by the same reactor.

EVENTS are timestamped, and reactions are triggered by 
them in timestamp order. Because reactions have to declare 
the ports they access, a deterministic execution schedule can 
be derived purely based on this readily available dependency 
information. Reactions are logically instantaneous.

DEADLINES require that when an input arrives at the last link 
in a chain of reactions triggered by an action, the difference 
between current physical time and the timestamp of the 
action is less than the specified maximum delay.

PHYSICAL ACTIONS are assigned a timestamp equal to the 
current physical time. Combined with deadlines, they allow 
for the specification and enforcement of end-to-end real-
time constraints between sensors and actuators.

Fig. 3: LF implementation of MotorControl reactor

Fig. 4: Execution of reactor program

LINGUA FRANCA (LF) is our coordination language for the 
definition and composition of reactors. LF is polyglot, and 
intended to be used with a variety of target languages. An LF 
program is deterministic unless the reactions (written in the 
target language) explicitly introduce nondeterminism, for 
instance, by reporting readings from some I/O device.

THE LF COMPILER generates target code that brings 
declared ports and actions into reaction scope. It constructs a 
precedence graph that governs the execution of reactions at 
any given time step. The toolchain is built using Xtext and 
features a syntax-directed editor that runs within Eclipse. 
Command-line tools are available as well.

TIME is a first-class citizen in LF; it allows for the 
specification of delays and deadlines.

FEDERATED EXECUTION allows reactors to interact through 
a network stack. We can either use a central coordinator or 
leverage fully distributed safe-to-process analysis known 
from PTIDES [1] and Spanner to preserve the deterministic 
reactor semantics (provided there are bounds on network 
latency and clock synchronization error).

End-to-end maximum delay from sensor to actuator

physical action

Our most mature target is C, and it uses POSIX primitives to 
obtain system time and manage threads of execution. The 
runtime is small (~3K LOC) and lightweight (up to 23 million 
reactions per second on a single core of a 2.6 GHz Intel Core 
i7). It features memory management for non-primitive event 
payloads (structs, arrays) and implements an earliest-
deadline-first (EDF) scheduling policy.

Currently under development:

              support for run-time mutations;

Triggers
Start delimiter of 
target code

End delimiter
of target code

Effects

Reaction bodies must be written in C;
the LF compiler will invoke the C compiler
after it has completed code generation

Definition of a reactor class

State shared by all reactions are
accessible through the self struct

Inputs and outputs, iff declared in the
reaction signature, accessible through 

local variables in reaction code

Creation of event on output port

Types are inherited from the target language
(LF has its own built-in type for time)

State initialization

Reading the value of an input port

Function definitions and/or 
#includes can be put in 
preamble (not shown)

Scheduled events are ordered by timestamp; 
physical time must match the timestamp before 
reactions triggered by the event are loaded onto 
the reaction queue.

Pending reactions are ordered based on 
their location in the reaction graph. A 
reaction is not allowed to execute until 
all inputs that it depends on are known 
(i.e., preceding reactions have finished 
executing). Observing this constraint 
allows us to exploit parallelism 
exposed in the reaction graph, without 
relinquishing determinism. 

A thread pool is used to 
efficiently handle rapidly 
succeeding reactions.

While reactors can guarantee determinism on 
conventional general-purpose hardware, ruling 
out the possibility of deadline violations requires 
a sound worst-case execution time (WCET) 
analysis of all reactions in the critical path of a 
deadline. This can be done much more accurately 
on platforms that are designed to yield 
predictable timing.

The first precision-timed hardware platform 
we're targeting is Patmos [2], which is well 
supported by several WCET tools. FlexPRET [3], 
which distinguishes between soft and hard real-
time threads, is a particularly well-suited target 
for reactors.

With WCET carried out in the LF compiler, 
meeting timing constraints would be as simple as 
specifying them in the program. If the program 
compiles successfully, this means that the 
computed schedule is feasible, and execution of 
the program is guaranteed to satisfy the 
constraints. 

LF TARGETS can be added with moderate effort because 
target code in an LF file is not parsed or analyzed but 
embedded verbatim into the generated code. Supporting a 
new target only requires implementing a reactor runtime 
and a code generator:

Targets currently supported or under development:

            C;

            C++;

            TypeScript;

            Python; and

            Rust.
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[3] Zimmer, M., Broman, D., Shaver, C., and Lee, E. A. FlexPRET: A processor platform for mixed-criticality systems. In Real-Time and Embedded Technologyand Application Symposium (2014).
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better syntax for expressing common patterns of 
parallel computation (e.g., map/reduce); and

pluggable scheduling to tune the runtime engine to 
specific kinds of workloads; and

bare-iron FlexPRET (RISC-V) support.
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Dependencies between reactions are captured in 
the reaction graph, which must be acyclic.

Process events without delay

Enforce a minimum spacing between
subsequent events

If min. spacing is violated, use the
value of the last event

Function declared in preamble

Any event
scheduled  on this 
action will acquire a
tag relative to the 
current physical 
time

If startup and
a are present
simultaneously,
this reaction will
execute first 
because it is
declared first


