

CPS: Small:

Reconciling Safety with the
Internet for Cyber-physical Systems

NSF CPS PI Meeting, June 3-4, 2021
Award No: 1836601

PI: Edward A. Lee, UC Berkeley
Student: Shaokai Lin

Postdoc: Marten Lohstroh

This work was supported in part by the National Science Foundation (NSF), award
#CNS-1836601 (Reconciling Safety with the Internet) and the iCyPhy Research Center
(Industrial Cyber-Physical Systems), supported by Denso, Ford, Siemens, and Toyota.

C H E C K O U T O U R

G I T H U B . C O M
/ I C Y P H Y/ L I N G U A - F R A N C A

.ORG

R E A C TO R S

TA R G E T S

L I N G U A F R A N C A

EXAMPLE: DRIVE-BY-WIRE SYSTEM

Fig. 1: Model of a Power Train Fig. 2: Dependencies between reactions

C, POSIX, PTHREADS PRECISION-TIMED HARDWARE

REACTORS are reactive software components that are
composed out of reactions, which may be triggered by events
produced internally (actions) or originating from other
reactors (inputs). A reactor may contain other reactors and
manage their connections. Connections define the flow of
events, and two reactors can be connected only if they are
contained by the same reactor.

EVENTS are timestamped, and reactions are triggered by
them in timestamp order. Because reactions have to declare
the ports they access, a deterministic execution schedule can
be derived purely based on this readily available dependency
information. Reactions are logically instantaneous.

DEADLINES require that when an input arrives at the last link
in a chain of reactions triggered by an action, the difference
between current physical time and the timestamp of the
action is less than the specified maximum delay.

PHYSICAL ACTIONS are assigned a timestamp equal to the
current physical time. Combined with deadlines, they allow
for the specification and enforcement of end-to-end real-
time constraints between sensors and actuators.

Fig. 3: LF implementation of MotorControl reactor

Fig. 4: Execution of reactor program

LINGUA FRANCA (LF) is our coordination language for the
definition and composition of reactors. LF is polyglot, and
intended to be used with a variety of target languages. An LF
program is deterministic unless the reactions (written in the
target language) explicitly introduce nondeterminism, for
instance, by reporting readings from some I/O device.

THE LF COMPILER generates target code that brings
declared ports and actions into reaction scope. It constructs a
precedence graph that governs the execution of reactions at
any given time step. The toolchain is built using Xtext and
features a syntax-directed editor that runs within Eclipse.
Command-line tools are available as well.

TIME is a first-class citizen in LF; it allows for the
specification of delays and deadlines.

FEDERATED EXECUTION allows reactors to interact through
a network stack. We can either use a central coordinator or
leverage fully distributed safe-to-process analysis known
from PTIDES [1] and Spanner to preserve the deterministic
reactor semantics (provided there are bounds on network
latency and clock synchronization error).

End-to-end maximum delay from sensor to actuator

physical action

Our most mature target is C, and it uses POSIX primitives to
obtain system time and manage threads of execution. The
runtime is small (~3K LOC) and lightweight (up to 23 million
reactions per second on a single core of a 2.6 GHz Intel Core
i7). It features memory management for non-primitive event
payloads (structs, arrays) and implements an earliest-
deadline-first (EDF) scheduling policy.

Currently under development:

 support for run-time mutations;

Triggers
Start delimiter of
target code

End delimiter
of target code

Effects

Reaction bodies must be written in C;
the LF compiler will invoke the C compiler
after it has completed code generation

Definition of a reactor class

State shared by all reactions are
accessible through the self struct

Inputs and outputs, iff declared in the
reaction signature, accessible through

local variables in reaction code

Creation of event on output port

Types are inherited from the target language
(LF has its own built-in type for time)

State initialization

Reading the value of an input port

Function definitions and/or
#includes can be put in
preamble (not shown)

Scheduled events are ordered by timestamp;
physical time must match the timestamp before
reactions triggered by the event are loaded onto
the reaction queue.

Pending reactions are ordered based on
their location in the reaction graph. A
reaction is not allowed to execute until
all inputs that it depends on are known
(i.e., preceding reactions have finished
executing). Observing this constraint
allows us to exploit parallelism
exposed in the reaction graph, without
relinquishing determinism.

A thread pool is used to
efficiently handle rapidly
succeeding reactions.

While reactors can guarantee determinism on
conventional general-purpose hardware, ruling
out the possibility of deadline violations requires
a sound worst-case execution time (WCET)
analysis of all reactions in the critical path of a
deadline. This can be done much more accurately
on platforms that are designed to yield
predictable timing.

The first precision-timed hardware platform
we're targeting is Patmos [2], which is well
supported by several WCET tools. FlexPRET [3],
which distinguishes between soft and hard real-
time threads, is a particularly well-suited target
for reactors.

With WCET carried out in the LF compiler,
meeting timing constraints would be as simple as
specifying them in the program. If the program
compiles successfully, this means that the
computed schedule is feasible, and execution of
the program is guaranteed to satisfy the
constraints.

LF TARGETS can be added with moderate effort because
target code in an LF file is not parsed or analyzed but
embedded verbatim into the generated code. Supporting a
new target only requires implementing a reactor runtime
and a code generator:

Targets currently supported or under development:

 C;

 C++;

 TypeScript;

 Python; and

 Rust.

[2] Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., and Prokesch, D. Patmos: A time-predictable microprocessor. Real-Time Systems 54(2) (Apr 2018), 389–423.

[3] Zimmer, M., Broman, D., Shaver, C., and Lee, E. A. FlexPRET: A processor platform for mixed-criticality systems. In Real-Time and Embedded Technologyand Application Symposium (2014).

[1] Y. Zhao, E. A. Lee, and J. Liu, A programming model for time synchronized distributed real-time systems in Real-Time and Embedded Technology and Applications Symposium (2007).

better syntax for expressing common patterns of
parallel computation (e.g., map/reduce); and

pluggable scheduling to tune the runtime engine to
specific kinds of workloads; and

bare-iron FlexPRET (RISC-V) support.

PowerTrain

Motor

3msec

Reaction with deadline

torque

Apply the requested torque

Brakes

2msec

Reaction with deadline

force

Apply the requested force

MotorControl

2

Adjust torque unless car is braking

1

Set torque to zero if car is braking

angle

brkOn

torque

BrakeControl

angle force

Adjust the force

Accelerator

2

Output reported angle

1

Setup callback

P

min delay: 0
min spacing: 2msec

policy: replace

angle

BrakePedal

2

Output reported angle

1

Setup callback

P

min delay: 0
min spacing: 1msec

policy: replace

angle

applied

Dependencies between reactions are captured in
the reaction graph, which must be acyclic.

Process events without delay

Enforce a minimum spacing between
subsequent events

If min. spacing is violated, use the
value of the last event

Function declared in preamble

Any event
scheduled on this
action will acquire a
tag relative to the
current physical
time

If startup and
a are present
simultaneously,
this reaction will
execute first
because it is
declared first

