CPS: Small: Recovery Algorithms for Dynamic Infrastructure Networks

Hamsa Balakrishnan, Massachusetts Institute of Technology

Contributors: Sandeep Badrinath, Joao Cavalcanti, Lauren Craik, Kwassi Degue, Karthik Gopalakrishnan, Max Li

Most modern infrastructures are large-scale networks of interacting components, resulting in cascading disruptions. We develop data-driven methods for the modeling, analysis, and control of infrastructure networks, with the goal of improving resilience.

Challenges:

- Modeling: Identification and validation of scalable models of infrastructure networks
- Analysis: Privacy-aware outlier detection in graph signals to analyze disruptions in large-scale networks
- Control: Design of optimal recovery algorithms
- Incentives: Empirical analysis of the equity of congestion pricing

Data-driven identification of Markov Jump Linear Systems

Optimal control algorithms for post-disruption recovery

Benchmarking of airline operations

Analysis of the equity of congestion pricing in London

Scientific Impact:

- Models of networked dynamical systems (air transportation networks, smart grids, etc.)
- Optimal control algorithms for recovery after disruptions
- Robust control of queuing networks
- Differentially private anomaly detection of correlated data
- Empirical analysis of use behavior in response to pricing

Differentially private outlier detection for correlated data

Publicly known Privacy-sensitive Privacy noise

 μ_i, σ_i : Mean, variance for house i

 ρ_{ij} : Correlation between houses i and j

n: Number of houses

f: Additive fault

 ϵ, δ, ρ : Privacy parameters

k : Day

References:

K. Gopalakrishnan et al. "Network-Centric Benchmarking of Operational Performance in Aviation," Transportation Research Part C, 2021

K. Gopalakrishnan & H. Balakrishnan. "Control and Optimization of Air Traffic Networks," Annual Reviews of Controls, Robotics and Autonomous Systems, 2021

M.Z. Li et al. "Approximate Projection-Based Control of Networks," CDC 2020

K. Degue et al. "Differentially Private Outlier Detection in Multivariate Gaussian Signals," ACC 2021