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WHY VERIFICATION?
• It is crucial to ensure that safety-critical CPS

function properly.
• Experimental testing by itself is insufficient.
• Supplement with deductive verification: model

CPS in logic and PROVE properties about the models!

+ = SAFER CPS

CHALLENGES FOR CPS PROOFS
• Ordinary differential equations (ODEs) are used to

model continuous behavior of CPS.
• Invariant regions are often used to reason about

ODEs. Finding these regions is quite challenging.
• Once ODEs are handled, proofs often reduce to

quantified statements in first-order real arithmetic.
• There is a dearth of efficient formally verified

support for quantifier elimination (QE).

APPROACHES
ODEs: We further develop the tool Pegasus.
• Pegasus automatically generates continuous

invariants for systems of ODEs.
• The generated invariants are checked by the

theorem prover KeYmaera X.

QE: We propose formally verifying the Ben-Or, Kozen,
and Reif (BKR) QE algorithm.
• BKR has good potential for parallelism.
• In general, there is an inverse correlation between

practicality and ease of formalization
• BKR is in a potential sweet spot; multivariate BKR

builds directly on univariate BKR

RESULTS: ODES
We have added a number of new strategies for invariant generation and tested Pegasus on 60 new benchmarks (all
based on examples from existing literature) [2]. Some of our results are displayed below.
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Left Figure: An example of an invariant found by Pegasus. Starting regions are in green, unsafe regions are in red. The arrows show the vector
field. Right Figure: Each column corresponds to a benchmark problem (empty columns are unsolved). ODE classifications for each benchmark
are annotated at the top of the figure (homogeneous polynomial (H), polynomial (P), linear (L), affine (A), multi-affine (M), dashes indicate same
class as the enclosing labels). Abbreviations on the LHS indicate different strategies that Pegasus is trying (e.g., FI means “First Integrals” and BC
means “Barrier Certificates”) on total proof duration (T), generation duration (G), and checking duration (C).

RESULTS: QE
We have formally verified the univariate BKR algorithm in the theorem prover Isabelle/HOL [1].
• Key step: Find the set of all consistent sign assignments to (univariate) {q1, . . . , qn} at the zeros of (univariate) p.
• To solve this, inductively construct a matrix equation.
• The idea of using a matrix equation dates back to Tarski; BKR makes it practical by doing a reduction step.
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Step 1: Identify 0’s in LHS vector
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corresponding columns in the matrix
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Step 3: Identify a basis of row vectors
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A visualized example. In all three figures, p = x3 − x. The LHS figure shows the base case for q1 = 3x3 + 2. The center figure shows combining
cases for q1 = 3x3 + 2 and q2 = 2x2 − 1. The RHS figure shows the reduction of the combined system.

BROADER IMPACTS
• Education: Support for invariant generation helps

students verify complicated models.
• Societal: We focus on the challenges in CPS

verification to make it more practical.
• Societal: More practical CPS verification means

more trustworthy CPS.
• Beyond CPS: Formally verified QE has broader

applications in diverse fields, like life sciences.
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