
2021 NSF Cyber-Physical Systems Principal Investigators' Meeting
June 2-4, 2021 

Programming Language, Type System, and Compiler Design for Cyber-physical Digital 
Microfluidic Biochips: Automating Programmable Biochemistry at the Microfluidic Scale

Publications available at http://www.cs.ucr.edu/~philip
Philip Brisk (PI) – University of California, Riverside

Broader Impacts (Society):
• Lower the barrier for entry for 

microfluidic practitioners
• Increased productivity for 

researchers in the biological sciences
• Programmable/automated screening 

for drug discovery applications

Broader Impacts (Education/Outreach):
• 8 PhD students supervised by the PI
• 35 undergraduate participants 

• 8 women; 6 Black or Latino
• 5 papers with undergraduate co-

authors

• “BioHack” Hackathon at UCR

Broader Impacts (Commercial and 
Scientific Applications):
• DNA Sequencing (Microsoft, Oxford 

Nanopore, Sharp, AQDrop)
• Neonatal Screening (Baebies)
• Neuromorphic Behavior (UT Knoxville)

Award ID#:1545097

BioScript: Programming Language for Digital Microfluidics
Digital microfluidic devices are typically programmed in a manner akin to writing machine 
code – BioScript enables high-level programmability of EWoD LOCs featuring real-time 
feedback via integrated sensing.  It features a chemical safety type system based on union 
types, preventing accidental unsafe chemical interactions.

(a)

(b)

(d)(c)

BioScript’s type system prohibits unsafe mixtures (a), causing an 
unsafe method for synthesizing acetaminophen to fail (b), while 

allowing a safe method (d).  The type system has been adapted to 
prevent unsafe chemical storage and disposal (c).

Optimizing Digital Microfluidic BioChip Compilation

BioScript’s Syntax

Modern digital 
microfluidic platforms are 
severely resource-
constrained, and the 
protocols they execute 
have precise timing 
constraints that must be 
adhered to; complex 
chemical protocols 
(especially those 
featuring multiple 
execution paths) can be 
synthesized on these 
devices by exploring the 
tradeoffs between 
instruction parallelism 
and mix operation 
latency.  Timing 
expectations are 
annotated at the 
language level to enforce 
these as constraints 
during compilation.

Compilation updated to include optimizing steps that affect 
scheduling, placement and routing.  Coalescing the interference 
graph of the schedule allows dependent operations to be 
optimally placed to reduce routing; rescheduling mix latencies 
provides spatial resource-availability adjustments.

Execution graph with timing 
constraints between 
operations; an efficient 
heuristic and optimal ILP 
scheduler solve the updated 
scheduling problem that 
includes timing constraints.


