

Autonomy Protocols: From Human Behavioral Modeling to Correct-by-Construction Scaleable Control

Behçet Açıkmeşe, UWashington (PI) Mary Hayhoe, UTexas (Co-PI) Ufuk Topçu, UTexas (Co-PI) Dana Ballard, UTexas (Co-PI)

NSF CPS PI Meeting, Nov 2017

Hierarchical autonomy architecture

Mission Planning

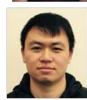
Tactical Planning

Motion Planning

Motion Control

Team

Mary Hayhoe Dana Ballard Ufuk Topcu



Chia-Ling Li Ruohan Zhang Leif Johnson Constantin Matt Tong Nils Jansen Rothkopf

Behçet Açıkmeşe

Yue Yu

Michael Szmuk

Mahmoud El Chamie

Daniel Dueri Yuanqi Mao

Nazli Demirer

UNIVERSITY of WASHINGTON

Scaleable autonomy protocols with provable correctness, incorporating models of human behavior

Experimentally "learn" how humans decompose visually guided behavior into subtasks, "decision modules"

- Modular Reinforcement Learning
- Modular MDPs

Synthesize, corrrect-by-construction, reactive decision policies via formal methods

Decode high-level directives to actionable motion planning specifications

Compute and robustly execute optimal motion plans

- Convexification
- Real-time IPMs

