

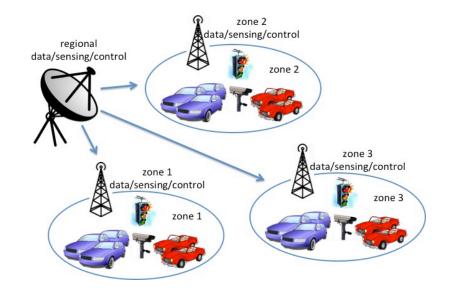
CPS: Synergy: Collaborative Research: Collaborative Vehicular Systems

Ümit Özgüner¹, Georgios Fainekos², Keith A. Redmill¹, Füsun Özgüner¹, Arda Kurt¹, Theodore P. Pavlic²

- ¹The Ohio State University, ²Arizona State University
- citr.osu.edu, www.public.asu.edu/~gfaineko/
- ozguner.1@osu.edu, fainekos@asu.edu
- Awards #1446735, #1446730

Description

Challenge:


- Fully and partially self-driving vehicles, interacting with conventional vehicles on a complex road grid
- The need to develop rules to study and methods to coordinate a network of these

Focus:

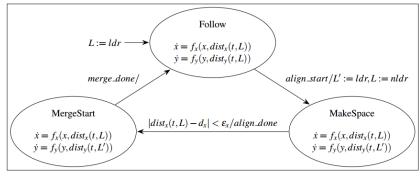
- Collaboration
- Scalability
- Testability and Verifiability

Scientific Impact:

- Investigation of scalability questions for a more general class of CPS architecture
- Integration of different concerns such as safety, security and collaboration
- Ways of testing and verifying the above concerns in a meaningful CPS environment
- Methods to estimate, track, predict the behavior of multiple agents in a CPS setting

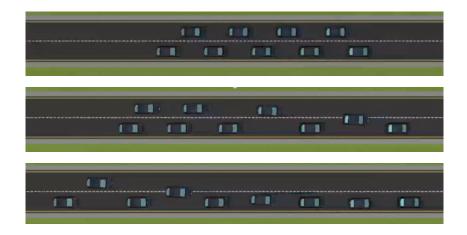
Broader Impact:

 Safer vehicles and more efficient collaborative driving on roadways



Findings (Collaborative work)

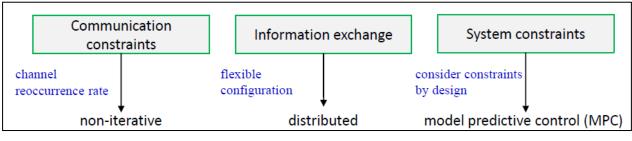
Developed a formal modeling framework for collaborative vehicles

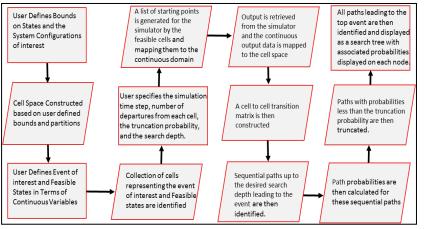

High level defined with π -calculus expressions

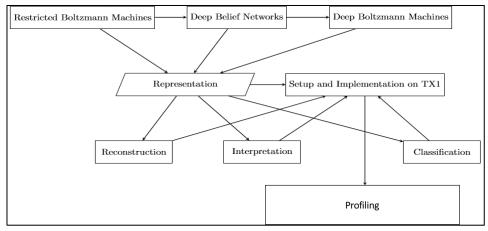
- 1: Wait(y) = y.merge_done
- 2: Align(y) = $\overline{align_start}.align_done.\overline{y}$.Wait
- 3: $\operatorname{Rcv}_{\operatorname{Ldr}}(y, ldr) = y(nldr).\overline{set_{\operatorname{Idr}}} < nldr > .\operatorname{Align}(y)$
- 4: Send_Ldr(y) = $get_ldr(ldr).\overline{y} < ldr > .Rcv_Ldr(y, ldr)$
- 5: $\operatorname{Respond}(y, flag) = flag : [True \Rightarrow \operatorname{Send} \operatorname{Ldr}(y)]$
- 6: Ident(y) = $get_id(id).\overline{y} < id > .y(flag).$ Respond(y, flag)
- 7: Cooperate=! $\mathbf{r}(x).(\mathbf{v}y)(\overline{x} < y > .Ident(y))$
- 8: Follow = $\overline{keep_dist}$.Follow
- 9: Follower=Follow||Cooperate

Low level defined with hybrid automata

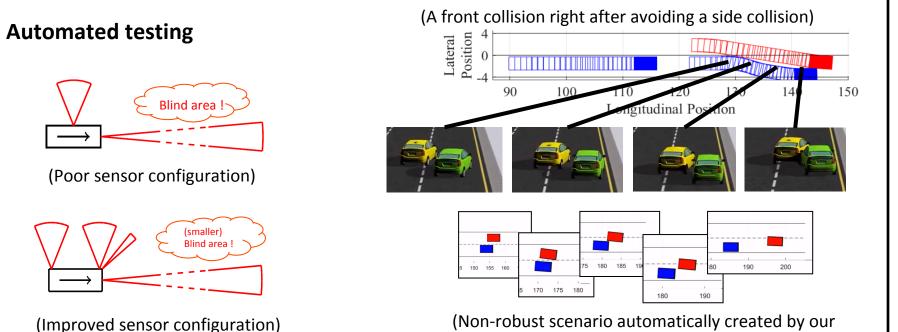
(b) Follower HA




Collaboration via DMPC


Experiment at OSU

Validation via Functional Hierarchies and Backtracking



Real-Time Traffic Scene Perception via Deep Learning

Findings

(Non-robust scenario automatically created by our framework under the new sensor configuration)

Automated planning for vehicle coordination

$\overset{\vee}{\wedge}$		$ \rightarrow $								
		P				,				
			7 <		<u> </u>	\leftarrow				
	×			Ċ	\mathbf{v}					

